IBM Research

Sieving for shortest lattice vectors
using near neighbor techniques

Thijs Laarhoven

mail@thijs.com
http://www.thijs.com/

Coding & Crypto seminar, Ziirich, Switzerland
(April 26, 2017)


mailto:mail@thijs.com
http://www.thijs.com/

Outline

Lattices
Basics

Cryptography

Enumeration algorithms
Fincke-Pohst enumeration
Kannan enumeration
Pruned enumeration

Sieving algorithms
Basic sieving
Leveled sieving
Near neighbor searching

Practical comparison



Lattices
Basics

Cryptography

Outline



Lattices

What is a lattice?

Qe



Lattices

What is a lattice?

by

b,



Lattices
What is a lattice?




Lattices
Shortest Vector Problem (SVP)




Lattices
Shortest Vector Problem (SVP)




Lattices
Closest Vector Problem (CVP)

. t.



Lattices
Closest Vector Problem (CVP)
te
oV



Lattices '

Lattjce basis reduction




Cryptography

GGH cryptosystem [GGH97]
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Cryptography

Security analysis

¢ Finding short bases implies breaking these schemes
e Estimate hardness based on state-of-the-art basis reduction

» LLL [LLL83] - fast, but poor quality in high dimensions
» BKZ [Sch87, SE94] - arbitrary time/quality tradeoff
» Variants of BKZ [..., MW16, AWHT16] - best in practice

e Complexity of BKZ dominated by SVP in projected lattices
» ex. NewHope [ADPS16]: BKZ ~ one call to SVP subroutine
e Question: What is the computational cost of exact SVP?
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Exact SVP algorithms

Algorithm log,(Time)  log,(Space)
Enumeration [Poh81, Kan83, ..., MW15, AN17] O(nlogn) O(logn)
g AKS-sieve [AKS01, NV08, MV10, HPS11] 3.398n 1.985n
: ListSieve [MV10, MDB14] 3.199n 1.327n
% Birthday sieves [PS09, HPS11] 2.465n 1.233n
8 Voronoi cell algorithm [AEVZ02, MV10b] 2.000n 1.000n
& Discrete Gaussians [ADRS15, ADS15, Ste16] 1.000n 1.000n
Nguyen-Vidick sieve [NV08] 0.415n 0.208n
GaussSieve [MV10, ..., IKMT14, BNvdP14] 0.415n 0.208n
g Leveled sieving [WLTB11, ZPH13] 0.3778n 0.283n
& Overlattice sieve [BGJ14] 0.3774n 0.293n
-2 Hyperplane LSH [Laal5, MLB15, Mar15] 0.337n 0.208n*
-2 May and Ozerov’s NNS method [BGJ15] 0.311n 0.208n*
2 Spherical/cross-polytope LSH [LdW15, BL16] 0.298n 0.208n*
= Spherical filtering [BDGL16, MLB17] 0.293n 0.208n*

Triple sieve [BLS16, HK17, Laal7] 0.359n 0.188n
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Fincke-Pohst enumeration

Overview

Theorem (Fincke—Pohst, Math. of Comp. ’85)

Fincke-Pohst enumeration runs in time 2°™) and space poly(n).

Essentially reduces SVP, (CVP,) to 2°(" instances of CVP,_;
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Kannan enumeration

Overview

Theorem (Kannan, STOC’83)
Kannan enumeration runs in time 2°011°8™ and space poly(n).

“Our algorithm reduces an n-dimensional problem to
polynomially many (instead of 2°™) (n— 1)-dimensional
problems. [...] The algorithm we propose, first finds a more

orthogonal basis for a lattice in time 2°(1og™) ”
— Kannan, STOC’83
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Overview

“Well-chosen bounding functions lead asymptotically to an
exponential speedup of about 2"/* over basic enumeration,
maintaining a success probability > 95%.”

— Gama-Nguyen—-Regev, EUROCRYPT’10

“With extreme pruning, the probability of finding the
desired vector is actually rather low (say, 0.1%), but
surprisingly, the running time of the enumeration is reduced
by a much more significant factor (say, much more than
1000).”

— Gama-Nguyen-Regev, EUROCRYPT’10
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Pruned enumeration

Overview

e Pruning framework: Enumerate £ N 9% N P for well-chosen P
e Continuous pruning [GNR10]: P is a cylinder intersection.

e Discrete pruning [AN17]: P is a union of boxes.

“We now know continuous pruning and discrete pruning
[... ] but a theoretical asymptotical comparison is not easy.
Can a combination of both, or another form of pruning be
more efficient?”

— Aono-Nguyen, EUROCRYPT’17
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The Nguyen-Vidick sieve

Overview

e Space complexity: 1/4/3 " a 20210+ yectors
» Need v/4/ 3" vectors to cover all corners of R"
o Time complexity: (4/3)" s 20-42n+o(n)

» Comparing a target vector to all centers; 20-21n+o(")
> Repeating this for each list vector: 20-21n+o(m
» Repeating the whole sieving procedure: poly(n)

Heuristic result (Nguyen-Vidick, J. Math. Crypt. ’08)
The NV-sieve runs in time 20427+ gnd space 20-21n+o(m),
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Three-level sieve

Overview

Heuristic result (Nguyen-Vidick, J. Math. Crypt. ’08)

The one-level sieve runs in time 2°4159" and space 2°-207>",

Heuristic result (Wang-Liu-Tian-Bi, ASIACCS’11)
The two-level sieve runs in time 20-3836n

and space 20-2>57",
Heuristic result (Zhang—Pan-Hu, SAC’13)

The three-level sieve runs in time 2°3778" and space 2°-2833",
Conjecture

The four-level sieve runs in time 2°3774" and space 2°2°?>" and
higher-level sieves are not faster than this.
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Locality-sensitive hashing

Introduction

Problem: Given a high-dimensional data set D C R", preprocess it
such that when later given a target t € R", we can quickly find a
nearby vector to t in D.

“The key idea is to use hash functions such that the

probability of collision is much higher for objects that are
close to each other than for those that are far apart.”

— Indyk-Motwani, STOC98
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Hyperplane LSH

Overview

e Two parameters to tune
» k = 0(n): Number of hyperplanes, leading to 2¥ regions
> t=2°; Number of different, independent “hash tables”

e Space complexity: 20.337n+0(n)

> Number of vectors: 20-208m+0(n)

> Number of hash tables: 20-12%+o(n)

» Each hash table contains all vectors
e Time Complexity: 20.337n+o(n)

» Cost of computing hashes:
» Candidate nearest vectors: 20-129n+0()
> Repeat this for each list vector: 20-2087+0(n)

20.129n+o(n)

Heuristic result (Laarhoven, CRYPTO’15)
Sieving with hyperplane LSH solves SVP in time 20-337m+0(0),
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May and Ozerov’s NNS method
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SVP in practice

“We expect our [enumeration ] algorithm to be more
efficient than lattice sieving up to dimension n = 1895.”
— Micciancio-Walter, SODA’15

“As far as I know, everyone who has tried sieving as a BKZ
subroutine in place of enumeration has concluded that
sieving is much too slow to be useful—the cutoff is beyond
cryptographically relevant sizes.”

— Bernstein, Google groups '16

“I compute a cross-over point between enumeration and the
HashSieve at dimension b = 217.”
— Ducas, Google groups ’16



@
©
c
Q
[&]
(0]
2
>
=
X
I3
Q.
£
Q
[&]
(0]
£
|_
T

109,

107

10°

1000

SVP in practice

@ Enumeration (continuous pruning)

® Enumeration (discrete pruning)

® Sieving °
° o ¢
.. o
[ )
( J @ ® [ ..
°® e o
o ®e C I ) s
L) o
[ J
[ J
| | | |
80 100 120 140

— Dimension




Take-home messages

Lattice-based crypto relies on hardness of finding short bases

State-of-the-art basis reduction: BKZ with fast SVP subroutine
e Enumeration for SVP:

» Memory-efficient

> Best in low dimensions

» Fast pruning heuristics
Sieving for SVP:

» Large memory requirement

» Fastest in high dimensions

» Practical near neighbor speedups

e Enumeration still leading, but sieving is catching up!
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