IBM Research

Sieving for closest lattice vectors (with preprocessing)

Thijs Laarhoven

mail@thijs.com
http://www.thijs.com/

SAC 2016, St. John's (NL), Canada (August 12, 2016)

What is a lattice?

What is a lattice?

What is a lattice?

Lattice basis reduction

Shortest Vector Problem (SVP)

Shortest Vector Problem (SVP)

Closest Vector Problem (CVP)

Closest Vector Problem (CVP)

Outline

Sieving for SVP

Sieving for CVP

Sieving for CVPP

Conclusion

Outline

Sieving for SVP

Sieving for CVF

Sieving for CVPI

Conclusion

Generate random lattice vectors

The GaussSieve and Nguyen-Vidick sieve

Leveled sieving approaches

Locality-Sensitive Hashing (LSH)

Locality-Sensitive Filters (LSF)

Space complexity

Outline

Sieving for SVP

Sieving for CVP

Sieving for CVPI

Conclusion

Space/time trade-offs

Space complexity

Space/time trade-offs

Space complexity

• Intuitively, $CVP_n \approx SVP_{n+1}$ [Kan87]

- Intuitively, $CVP_n \approx SVP_{n+1}$ [Kan87]
- Can also directly modify sieving to solve CVP

- Intuitively, $CVP_n \approx SVP_{n+1}$ [Kan87]
- Can also directly modify sieving to solve CVP
- Costs of CVP_n factor 2 more than SVP_n

Outline

Sieving for SVF

Sieving for CVF

Sieving for CVPP

Conclusion

Run a GaussSieve as preprocessing

Run a GaussSieve as preprocessing

BWL

Sieving for CVPP Relation with the Voronoi cell

Relation with the Voronoi cell

Overview

• Blue region: Gauss cell &

- Blue region: Gauss cell &
 - Defined by 2^{0.21n+o(n)} short lattice vectors
 Volume: Vol(𝒢) = 2^{O(n)} · det(𝔾)

 - ► Reductions always land in 𝕞

- Blue region: Gauss cell &
 - Defined by 2^{0.21n+o(n)} short lattice vectors
 Volume: Vol(𝒢) = 2^{O(n)} · det(𝔾)

 - ► Reductions always land in 𝕞

- Blue region: Gauss cell &
 - ▶ Defined by $2^{0.21n+o(n)}$ short lattice vectors
 - Volume: $Vol(\mathscr{G}) = 2^{O(n)} \cdot \det(\mathscr{L})$
 - ▶ Reductions always land in 𝚱
- Red region: Voronoi cell */
 - ▶ Defined by $2^{n+o(n)}$ short lattice vectors
 - ▶ Volume: $Vol(\mathscr{V}) = det(\mathscr{L})$
 - Reductions almost never land in \mathcal{V}

- Blue region: Gauss cell &
 - ▶ Defined by $2^{0.21n+o(n)}$ short lattice vectors
 - Volume: $Vol(\mathscr{G}) = 2^{O(n)} \cdot \det(\mathscr{L})$
 - ▶ Reductions always land in 𝚱
- Red region: **Voronoi cell** */
 - ▶ Defined by $2^{n+o(n)}$ short lattice vectors
 - ▶ Volume: $Vol(\mathscr{V}) = det(\mathscr{L})$
 - Reductions almost never land in \mathcal{V}
- Problems:

- Blue region: Gauss cell G
 - ▶ Defined by $2^{0.21n+o(n)}$ short lattice vectors
 - Volume: Vol(\mathscr{G}) = $2^{O(n)} \cdot \det(\mathscr{L})$
 - ► Reductions always land in 𝕞
- Red region: Voronoi cell */
 - ▶ Defined by $2^{n+o(n)}$ short lattice vectors
 - Volume: $Vol(\mathcal{V}) = det(\mathcal{L})$
 - Reductions almost never land in \(\psi \)
- Problems:
 - Exponentially small success probability $Vol(\mathcal{V})/Vol(\mathcal{G})$

- Blue region: Gauss cell &
 - ▶ Defined by $2^{0.21n+o(n)}$ short lattice vectors
 - Volume: $Vol(\mathscr{G}) = 2^{O(n)} \cdot \det(\mathscr{L})$
 - ► Reductions always land in 𝕞
- Red region: Voronoi cell */
 - ▶ Defined by $2^{n+o(n)}$ short lattice vectors
 - Volume: $Vol(\mathcal{V}) = det(\mathcal{L})$
 - Reductions almost never land in \(\psi \)
- Problems:
 - ► Exponentially small success probability Vol(𝒜)/Vol(𝔞)
 - Probability only over randomness of targets

Solving the problems

• Idea 1: Larger lists, weaker reductions

Solving the problems

- Idea 1: Larger lists, weaker reductions
 - ► Problem: Exponentially small success probability

Solving the problems

- Idea 1: Larger lists, weaker reductions
 - ▶ Problem: Exponentially small success probability
 - ▶ To guarantee Vol(\mathscr{G}) ≈ Vol(\mathscr{V}), need $2^{n/2+o(n)}$ vectors
 - Preprocessing: reduce v_1 with v_2 iff

$$\|\mathbf{v}_1 - \mathbf{v}_2\| \le (\sqrt{2 - \sqrt{2}}) \|\mathbf{v}_1\|$$

► Fewer reductions ⇒ NNS techniques work even better!

- Idea 1: Larger lists, weaker reductions
 - ▶ Problem: Exponentially small success probability
 - ► To guarantee Vol(\mathscr{G}) \approx Vol(\mathscr{V}), need $2^{n/2+o(n)}$ vectors
 - Preprocessing: reduce v_1 with v_2 iff
 - $\|\mathbf{v}_1 \mathbf{v}_2\| \le (\sqrt{2 \sqrt{2}}) \|\mathbf{v}_1\|$
 - ► Fewer reductions ⇒ NNS techniques work even better!

- Idea 1: Larger lists, weaker reductions
 - Problem: Exponentially small success probability
 - ► To guarantee Vol(\mathscr{G}) \approx Vol(\mathscr{V}), need $2^{n/2+o(n)}$ vectors
 - Preprocessing: reduce v_1 with v_2 iff

$$\|\mathbf{v}_1 - \mathbf{v}_2\| \le (\sqrt{2 - \sqrt{2}}) \|\mathbf{v}_1\|$$

- ► Fewer reductions ⇒ NNS techniques work even better!
- Idea 2: **Rerandomizations** (full version)

- Idea 1: Larger lists, weaker reductions
 - ▶ Problem: Exponentially small success probability
 - ► To guarantee Vol(\mathscr{G}) \approx Vol(\mathscr{V}), need $2^{n/2+o(n)}$ vectors
 - Preprocessing: reduce v_1 with v_2 iff

$$\|\mathbf{v}_1 - \mathbf{v}_2\| \le (\sqrt{2 - \sqrt{2}}) \|\mathbf{v}_1\|$$

- ► Fewer reductions ⇒ NNS techniques work even better!
- Idea 2: **Rerandomizations** (full version)
 - Problem: Probability only over randomness of targets

- Idea 1: Larger lists, weaker reductions
 - ▶ Problem: Exponentially small success probability
 - ▶ To guarantee Vol(\mathscr{G}) ≈ Vol(\mathscr{V}), need $2^{n/2+o(n)}$ vectors
 - Preprocessing: reduce v_1 with v_2 iff $||v_1 v_2|| \le (\sqrt{2 \sqrt{2}}) ||v_1||$
 - ► Fewer reductions ⇒ NNS techniques work even better!
- Idea 2: **Rerandomizations** (full version)
 - Problem: Probability only over randomness of targets
 - ► Randomize target t before reducing $(t' \in_R t + \mathcal{L})$
 - Randomness now over algorithm, independently of target
 - Optimize expected time (time / success probability)

Trade-offs

• Sieving for CVP similar costs as SVP

- Sieving for CVP similar costs as SVP
- Sieving for CVPP much easier than SVP

- Sieving for CVP similar costs as SVP
- Sieving for CVPP much easier than SVP
 - ► Preliminary experiments: 2000× faster in dimension 50

- Sieving for CVP similar costs as SVP
- Sieving for CVPP much easier than SVP
 - ► Preliminary experiments: 2000× faster in dimension 50
 - Competitive with enumeration with pruning

- Sieving for CVP similar costs as SVP
- Sieving for CVPP much easier than SVP
 - ► Preliminary experiments: 2000× faster in dimension 50
 - Competitive with enumeration with pruning
- Better complexities for approximate CVP and BDD

- Sieving for CVP similar costs as SVP
- Sieving for CVPP much easier than SVP
 - ▶ Preliminary experiments: 2000× faster in dimension 50
 - Competitive with enumeration with pruning
- Better complexities for approximate CVP and BDD
- Open problem: hybrid enumeration with sieving

- Sieving for CVP similar costs as SVP
- Sieving for CVPP much easier than SVP
 - ▶ Preliminary experiments: 2000× faster in dimension 50
 - Competitive with enumeration with pruning
- Better complexities for approximate CVP and BDD
- Open problem: hybrid enumeration with sieving
 - ► Bottom part of enumeration tree corresponds to batch-CVP

- Sieving for CVP similar costs as SVP
- Sieving for CVPP much easier than SVP
 - ► Preliminary experiments: 2000× faster in dimension 50
 - Competitive with enumeration with pruning
- Better complexities for approximate CVP and BDD
- Open problem: hybrid enumeration with sieving
 - ► Bottom part of enumeration tree corresponds to batch-CVP
 - ► An efficient CVPP algorithm would speed up enumeration

- Sieving for CVP similar costs as SVP
- Sieving for CVPP much easier than SVP
 - ▶ Preliminary experiments: 2000× faster in dimension 50
 - Competitive with enumeration with pruning
- Better complexities for approximate CVP and BDD
- Open problem: hybrid enumeration with sieving
 - ► Bottom part of enumeration tree corresponds to batch-CVP
 - ► An efficient CVPP algorithm would speed up enumeration
 - ► CVPP in low dimension ⇒ no memory issues

