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The GaussSieve and Nguyen-Vidick sieve
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Leveled sieving approaches
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Locality-Sensitive Hashing (LSH)
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Locality-Sensitive Filters (LSF)
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e Intuitively, CVP, ~ SVP,,; [Kan87]
e Can also directly modify sieving to solve CVP
e Costs of CVP,, factor 2 more than SVP,,



Outline

Sieving for CVPP



Sieving for CVPP

Run a GaussSieve as preprocessing



' Sieving for CVPP

. Run a GaussSieve as preprocessing
. [ ) .
. . v2 [ )
. . [ ] v1
L] L] o L]



' Sieving for CVPP

Reduce the target vectors with the list

. [ ) .
. . v2 [ )
. . s V1
. . o .



' Sieving for CVPP

Reduce the target vectors with the list

. [ ) .
. . v2 [ )
. . s V1
. . o .



. . Sieving for CVPP
. Reduce the target vectors with the list .



. . Sieving for CVPP
. Reduce the target vectors with the list .



' Sieving for CVPP

Reduce the target vectors with the list

. . ° °
. ° tz .
. [ ) .
. . v2 [ )

. . [ J
L] L] 0 L]



Sieving for CVPP
Reduce the target vectors with the list




' Sieving for CVPP

. Reduce the target vectors with the list
. . [ )
. . Vi
L] L]
L] (] L]
L] L] L]



' Sieving for CVPP

Reduce the target vectors with the list




. . Sieving for CVPP
. Reduce the target vectors with the list




' Sieving for CVPP

. Reduce the target vectors with the list °
L] L] L] L] S
. [ J
. . V2



' Sieving for CVPP

Reduce the target vectors with the list

° ° ° [ ]
. ° tG .
. [ ) .
. . v2 [ )
. . e V1
. . o .



' Sieving for CVPP

Reduce the target vectors with the list




' Sieving for CVPP

Reduce the target vectors with the list




' Sieving for CVPP

Relation with the Voronoi cell

[ ) .
. v2 [ )
[ 4 Vi
. 0 .



' Sieving for CVPP

Relation with the Voronoi cell

[ ) .
. v2 [ )
Vi
[ 4
[ ] -Vy .
. [ ]



Sieving for CVPP
Reléitjog with the Voronoi cell

L]
L]
s
e .
L] L]



.\'\S\ieving for CVPP

Relﬁtjog with the Voronoi cell



.\'\S\ieving for CVPP

Relﬁtjog with the Voronoi cell



Sieving for CVPP

Overview



Sieving for CVPP

Overview

¢ Blue region: Gauss cell ¢



Sieving for CVPP

Overview

e Blue region: Gauss cell ¥

> Defined by 202"+ short lattice vectors
> Volume: Vol(%) = 2°0 . det(¥)
» Reductions always land in ¢



| e [}

Sieving for CVPP

Overview

e Blue region: Gauss cell ¥

> Defined by 202"+ short lattice vectors
> Volume: Vol(%) = 2°0 . det(¥)
» Reductions always land in ¢

* Red region: Voronoi cell ¥



Sieving for CVPP

Overview

e Blue region: Gauss cell ¥
> Defined by 202"+ short lattice vectors
> Volume: Vol(%) = 2°0 . det(¥)
» Reductions always land in ¢

* Red region: Voronoi cell ¥

> Defined by 2™ short lattice vectors
» Volume: Vol(¥) = det(¥)
» Reductions almost never land in ¥



Sieving for CVPP

Overview

e Blue region: Gauss cell ¥
> Defined by 202"+ short lattice vectors
> Volume: Vol(%) = 2°0 . det(¥)
» Reductions always land in ¢
* Red region: Voronoi cell ¥
> Defined by 2™ short lattice vectors
» Volume: Vol(¥) = det(¥)
» Reductions almost never land in ¥
e Problems:



Sieving for CVPP

Overview

e Blue region: Gauss cell ¥
> Defined by 202"+ short lattice vectors
> Volume: Vol(%) = 2°0 . det(¥)
» Reductions always land in ¢
* Red region: Voronoi cell ¥
> Defined by 2™ short lattice vectors
» Volume: Vol(¥) = det(¥)
» Reductions almost never land in ¥
e Problems:

» Exponentially small success probability Vol(¥)/ Vol(¥)



Sieving for CVPP

Overview

e Blue region: Gauss cell ¥
> Defined by 202"+ short lattice vectors
> Volume: Vol(%) = 2°0 . det(¥)
» Reductions always land in ¢
* Red region: Voronoi cell ¥
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Solving the problems

e Idea 1: Larger lists, weaker reductions

Problem: Exponentially small success probability

> To guarantee Vol(%) ~ Vol(¥), need 2"/2*°( yectors
» Preprocessing: reduce v; with v, iff

v = voll < (V2= V2)lw, |

Fewer reductions => NNS techniques work even better!
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Solving the problems

e Idea 1: Larger lists, weaker reductions

» Problem: Exponentially small success probability

> To guarantee Vol(%) ~ Vol(¥), need 2"/2*°(" yectors

» Preprocessing: reduce v; with v, iff

vy =vall < (V2= V2)|n, ]|

» Fewer reductions = NNS techniques work even better!
e Idea 2: Rerandomizations (full version)

» Problem: Probability only over randomness of targets

» Randomize target t before reducing (t' €, t + %)

» Randomness now over algorithm, independently of target

» Optimize expected time (time / success probability)
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Conclusion

e Sieving for CVP similar costs as SVP
e Sieving for CVPP much easier than SVP

» Preliminary experiments: 2000x faster in dimension 50
» Competitive with enumeration with pruning

e Better complexities for approximate CVP and BDD

e Open problem: hybrid enumeration with sieving

» Bottom part of enumeration tree corresponds to batch-CVP
» An efficient CVPP algorithm would speed up enumeration
» CVPP in low dimension =—> no memory issues
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