Search problems in cryptography From fingerprinting to lattice sieving Thijs Laarhoven

• Problem: preventing digital piracy

- Problem: preventing digital piracy
- Construct unique, digital fingerprints

- Problem: preventing digital piracy
- Construct unique, digital fingerprints
- Embed different fingerprints in each copy

- Problem: preventing digital piracy
- Construct unique, digital fingerprints
- Embed different fingerprints in each copy
- Content owners can compare pirate copies with database

- Problem: preventing digital piracy
- Construct unique, digital fingerprints
- Embed different fingerprints in each copy
- Content owners can compare pirate copies with database
- Allows content owners to catch pirates

• Problem: collusion attacks

- Problem: collusion attacks
- Different copies have different fingerprints

- Problem: collusion attacks
- Different copies have different fingerprints
- Mix several copies to distort the fingerprint

- Problem: collusion attacks
- Different copies have different fingerprints
- Mix several copies to distort the fingerprint
- Part I: collusion-resistant fingerprinting schemes

• Lattice: structured grid of points

• Lattice: structured grid of points

b

b₁

- Lattice: structured grid of points
- Mathematically: discrete subgroup of \mathbb{R}^d

- Lattice: structured grid of points
- Mathematically: discrete subgroup of \mathbb{R}^d
- Lattices come in various shapes and sizes

- Lattice: structured grid of points
- Mathematically: discrete subgroup of \mathbb{R}^d
- Lattices come in various shapes and sizes

•

0

.

• Lattice: structured grid of points

.

- Mathematically: discrete subgroup of \mathbb{R}^d
- Lattices come in various shapes and sizes

•

•

•

• • • • • Part II: Lattice sieving

. . . .

- Lattice: structured grid of points
 - Mathematically: discrete subgroup of \mathbb{R}^{d}
- Lattices come in various shapes and sizes

• Problem: finding shortest (non-zero) lattice vectors

.

. . . .

• • • • • • Part II: Lattice sieving

. . .

- Problem: finding shortest (non-zero) lattice vectors Easy in low dimensions, hard in high dimensions
-eiISI

• • • • Part II: Lattice sieving

. . . .

.

- Problem: finding shortest (non-zero) lattice vectors
 - Easy in low dimensions, hard in high dimensions
- Lattice sieving fastest method in high dimensions

• • • • Part II: Lattice sieving

• • •

. • •

. .

- Problem: finding shortest (non-zero) lattice vectors
 - Easy in low dimensions, hard in high dimensions
 - Lattice sieving fastest method in high dimensions
 - Part II: faster lattice sieving methods

Search problems in cryptography From fingerprinting to lattice sieving Thijs Laarhoven

Figure 2.1

Figure 2.2

Table 3.1

Pirate strategy	Simple capacity	Joint capacity		
$\boldsymbol{\theta}_{\text{int}}$: interleaving attack	$\left(\frac{1}{2\ln 2}\right)/c^2 \approx 0.72/c^2$	$\beta/c^2 pprox 0.84/c^2$		
$\boldsymbol{\theta}_{\text{all1}}$: all-1 attack	$(\ln 2)/c \approx 0.69/c$	$1/c \approx 1.00/c$		
$\boldsymbol{\theta}_{\text{maj}}$: majority voting	$\left(\frac{1}{\pi \ln 2}\right)/c \approx 0.46/c$	$1/c \approx 1.00/c$		
$\boldsymbol{\theta}_{\min}$: minority voting	$(\ln 2)/c \approx 0.69/c$	$1/c \approx 1.00/c$		
$\boldsymbol{\theta}_{\text{coin}}$: coin-flip attack	$\left(\frac{1}{4}\ln 2\right)/c \approx 0.17/c$	$\left(\log_2 \frac{5}{4}\right)/c \approx 0.32/c$		

Figure 4.1 (a)

Figure 4.1 (b)

Figure 5.1 (a)

Figure 5.1 (b)

Figure 5.1 (c)

Figure 5.1 (d)

Figure 5.1 (e)

Figure 5.2 (a-b)

Figure 5.2 (c-d)

Figure 5.2 (e-f)

Table 6.1

Model	Simple capacities	Joint capacities	
$\boldsymbol{\theta}_{all1}$: classical model	$(\ln 2)/c \approx 0.69/c$	$(1)/c \approx 1.00/c$	
$\boldsymbol{\theta}_{\mathrm{add}}$: additive noise model	$(\ln 2 - r)/c \approx 0.69/c$	$(1 - \frac{1}{2}h(r))/c \approx 1.00/c$	
$oldsymbol{ heta}_{ ext{dil}}$: dilution noise model	$(\ln 2 - O(r\ln r))/c \approx 0.69/c$	$(1-\frac{1}{2}h(r)\ln 2)/c \approx 1.00/c$	
$\boldsymbol{\theta}_{\mathrm{thr}}^{(u)}$: threshold (no gap)	between 0.46/ <i>c</i> and 0.69/ <i>c</i>	$(1)/c \approx 1.00/c$	
$\boldsymbol{\theta}_{int}^{(l,u)}$: threshold (int. gap)	between $0.72/c^2$ and $0.69/c$	between $0.84/c^2$ and $1.00/c$	
$\boldsymbol{\theta}_{\text{coin}}^{(l,u)}$: threshold (coin. gap)	between $0.17/c$ and $0.69/c$	between $0.32/c$ and $1.00/c$	

Figure 6.1 (a-d)

Figure 6.1 (e-f)

Figure 9.1

Figure 9.2

Figure 9.3

Table 9.1

Algorithm	Parameters	Polynomial	Compl	exities	Exponents	
Name	Variables = Values	(x:p(x)=0)	Time	Space	c_{time}	c_{space}
1-level sieve	$(\gamma_1) = (1)$	$x^{2} - 4x^{2} + 4$	x^{2n}	x ⁿ	0.4150	0.2075
2-level sieve	$(\gamma_1, \gamma_2) = (x, 1)$	$x^{6} - 4x^{4} + 4$	x^{3n}	x ²ⁿ	0.3836	0.2557
3-level sieve	$(\gamma_1, \gamma_2, \gamma_3) = (x^2, x, 1)$	$x^{10} - 4x^{6} + 4$	x^{4n}	x ³ⁿ	0.37780	0.2833
4-level sieve	$(\gamma_1, \dots, \gamma_4) = (x^3, \dots, 1)$	$x^{14} - 4x^8 + 4$ $x^{18} - 4x^{10} + 4$	x ⁵ⁿ	x^{4n}	0.37783	0.3023
5-level sieve	$(\gamma_1, \dots, \gamma_5) = (x^4, \dots, 1)$		x ⁶ⁿ	x^{5n}	0.3797	0.3164

Figure 9.4

Figure 10.1

Figures and tables Figure 10.2 w_1 w_3 w_5 w_4 w_2 w_9 w_7 w_6 w_{10} w_8 v× ÷ Hash table 1 (T_1) Hash table 2 (T_2) Hash table $t(T_t)$ **00** w_1, w_2 00 w_1, w_2, w_6, w_7 00 w_1, w_2 01 01 0110 w_6, w_7, w_8 10 W8 w_6, w_7, w_8 10 w_9, w_{10} 11 11 11

Figure 10.4 (a-c)

Figure 10.4 (d-e)

Figure 11.1

Figure 12.1

Figure 12.2 (a-c)

Figure 12.2 (d-e)

Figure 13.1

Figure 13.2

Figure 13.3

Table 14.1

	Algorithm	Classic	c al search	Quantu	m search
	Name	log ₂ (Time)	log ₂ (Space)	log ₂ (Time) l	log ₂ (Space)
stic SVP	Nguyễn–Vidick sieve	0.415d	0.208d	0.311d	0.208d
	GaussSieve	0.415d	0.208d	0.311d	0.208d
	2-level sieve	0.384d	0.256d	0.311d	0.208d
	3-level sieve	0.3778d	0.283d	0.311d	0.208d
	Overlattice sieve	0.3774d	0.293d	0.311d	0.208d
Heuris	High-level sieving (Chapter 9) Hyperplane LSH (Chapter 10) Hypercone LSH (Chapter 11) Cross-polytope LSH (Chapter 12) Hypercone filtering (Chapter 13)	0.3774d 0.337d 0.298d 0.298d 0.298d 0.292d	0.293d 0.208d 0.208d 0.208d 0.208d	0.311d 0.286d 0.268d 0.268d 0.265d	0.208d 0.208d 0.208d 0.208d 0.208d

Figure 14.1

Table 14.2

	Algorithm Name	Classi log ₂ (Time)	cal search log ₂ (Space)	Quantu log ₂ (Time)	ım search log ₂ (Space)
	Enumeration algorithms	$\Omega(d\log d)$	$O(\log d)$	$\Omega(d\log d)$	$O(\log d)$
6	AKS-sieve	3.398d	1.985d	2.672d	1.877d
SV	ListSieve	3.199d	1.327d	2.527d	1.351d
le	Voronoi cell algorithm	2.000d	1.000d	2.000d	1.000d
vab	AKS-sieve-birthday	2.648d	1.324d	1.986d	1.324d
Lo Lo	ListSieve-birthday	2.465d	1.233d	1.799d	1.286d
щ	Discrete Gaussian sampling	1.000d	0.500d	1.000d	0.500d
	(SVP_{δ}) ListSieve-birthday	0.802d	0.401 <i>d</i>	0.602d	0.401 <i>d</i>