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Lattice problems
Asymptotics for SVP and CVP

Algorithm log2(Time) log2(Space) Experiments

W
or

st
-c

as
e

SV
P Enumeration [Poh81, Kan83, . . . , MW15, AN17] O(n log n) O(log n) 152

AKS-sieve [AKS01, NV08, MV10, HPS11] 3.398n 1.985n –
Birthday sieves [PS09, HPS11] 2.465n 1.233n –
Enumeration/DGS hybrid [CCL17] 2.048n 0.500n –
Voronoi cell algorithm [AEVZ02, MV10b, BD15] 2.000n 1.000n 40
Quantum sieve [LMP13, LMP15] 1.799n 1.286n –
Quantum enum/DGS [CCL17] 1.256n 0.500n –
Discrete Gaussian sampling [ADRS15, ADS15, AS18] 1.000n 1.000n –
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P

The Nguyen–Vidick sieve [NV08] 0.415n 0.208n 50
GaussSieve [MV10, . . . , IKMT14, BNvdP16, YKYC17] 0.415n 0.208n 130*
Triple sieve [BLS16, HK17] 0.396n 0.189n 80
Kleinjung sieve [Kle14] 0.379n 0.189n 116
Leveled sieving [WLTB11, ZPH13] 0.378n 0.283n –
Overlattice sieve [BGJ14] 0.377n 0.293n 90
Triple sieve with NNS [HK17, HKL18] 0.359n 0.189n 76
Single filters [DL17, ADH+19] 0.349n 0.246n 155
Hyperplane LSH [Cha02, FBB+14, Laa15, . . . , LM18] 0.337n 0.337n 107
Hypercube LSH [TT07, Laa17] 0.322n 0.322n –
May–Ozerov NNS [MO15, BGJ15] 0.311n 0.311n –
Quantum sieve [LMP13] 0.311n 0.208n –
Spherical LSH [AINR14, LdW15] 0.297n 0.297n –
Cross-polytope LSH [TT07, AILRS15, BL16, KW17] 0.297n 0.297n 80
Spherical LSF [BDGL16, MLB17, ALRW17, DSvW19] 0.292n 0.292n 157
Quantum NNS sieve [LMP15, Laa16] 0.265n 0.265n –
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Lattice problems
Why study CVPP?

Concrete applications
• Speeding up lattice enumeration for SVP or CVP [GNR10]
• Solving approximate SVP on ideal lattices [PHS19]
• Computing class group actions in a relation lattice [BKV19]

Commonly a lattice basis (public key) is known long before the target vectors
(encryptions, signatures)
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Approximate Voronoi cells
Success probability estimation

Main problem: Success probability p of the iterative slicer?

Previous results: [DLW19]
• Directly obtained a lower bound on p via the slicer
• Conjectured that p is exactly proportional to vol(V)/vol(VL)
• Open problem: obtain a tight analysis, perhaps via vol(V)/vol(VL)

This work:
• Proved tight bounds on vol(V)/vol(VL) under the Gaussian heuristic
• Results show that p cannot be (exactly) proportional to vol(V)/vol(VL)
• From p≥ vol(V)/vol(VL) we obtain new lower bounds on p
• No nonsensical asymptote at 20.05d memory anymore
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Approximate Voronoi cells
Lower bounds on success probability

p ≥ ( -9 α
8+64α6-104 α4+64α2-16

16 α6-16α4
)d2 [DLW19]

p ≥ ( 4 α
2 - 4

α4
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Approximate Voronoi cells
Time–space trade-offs for CVPP
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this work
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Conclusion
Voronoi cells
• Solves CVPP exactly in the worst case for all lattices
• Requires too much space (and time) to be useful

Approximate Voronoi cells
• Offers heuristic alternative to exact Voronoi cells
• Success probability analysis:
É Original analysis did not appear to be tight
É Conjectured that tighter bounds may be obtained via vol(V)/vol(VL)
É This work: obtained tight bounds on the ratio vol(V)/vol(VL)
É Results in better CVPP complexities for low-memory regime
É Unfortunately, approach via vol(V)/vol(VL) is not tight either

Open problems
• Obtain truly tight bounds (ongoing work with Leo Ducas, Wessel van Woerden)
• Find an efficient BDDP-version of this CVPP algorithm
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