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Lattice problems
SVP/CVP asymptotics

Algorithm log2(Time) log2(Space) Experiments

W
or

st
-c

as
e

SV
P Enumeration [Poh81, Kan83, . . . , MW15, AN17] O(n log n) O(log n) 152

AKS-sieve [AKS01, NV08, MV10, HPS11] 3.398n 1.985n –
Birthday sieves [PS09, HPS11] 2.465n 1.233n –
Enumeration/DGS hybrid [CCL17] 2.048n 0.500n –
Voronoi cell algorithm [AEVZ02, MV10b, BD15] 2.000n 1.000n 40
Quantum sieve [LMP13, LMP15] 1.799n 1.286n –
Quantum enum/DGS [CCL17] 1.256n 0.500n –
Discrete Gaussian sampling [ADRS15, ADS15, AS18] 1.000n 1.000n –

A
ve

ra
ge

-c
as

e
SV

P

The Nguyen–Vidick sieve [NV08] 0.415n 0.208n 50
GaussSieve [MV10, . . . , IKMT14, BNvdP16, YKYC17] 0.415n 0.208n 130*
Triple sieve [BLS16, HK17] 0.396n 0.189n 80
Kleinjung sieve [Kle14] 0.379n 0.189n 116
Leveled sieving [WLTB11, ZPH13] 0.378n 0.283n –
Overlattice sieve [BGJ14] 0.377n 0.293n 90
Triple sieve with NNS [HK17, HKL18] 0.359n 0.189n 76
Single filters [DL17, ADH+19] 0.349n 0.246n 155
Hyperplane LSH [Cha02, FBB+14, Laa15, . . . , LM18] 0.337n 0.337n 107
Hypercube LSH [TT07, Laa17] 0.322n 0.322n –
May–Ozerov NNS [MO15, BGJ15] 0.311n 0.311n –
Quantum sieve [LMP13] 0.311n 0.208n –
Spherical LSH [AINR14, LdW15] 0.297n 0.297n –
Cross-polytope LSH [TT07, AILRS15, BL16, KW17] 0.297n 0.297n 80
Spherical LSF [BDGL16, MLB17, ALRW17, Chr17] 0.292n 0.292n 92
Quantum NNS sieve [LMP15, Laa16] 0.265n 0.265n –
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Overview

• Preprocessing: find a short basis (2O(n) time, poly(n) space)

• Query: round-off or nearest-planes (poly(n) time)
• Strengths: fast and simple algorithms
• Limitations: does not always solve CVPP
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• Query: reduce with the relevant vectors (2n+o(n) time [BD15])
• Strengths: provably solves CVPP for arbitrary targets and lattices
• Limitations: large time and memory requirements
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Approximate Voronoi cells
Estimating the volume [Laa16, DLW19]

Lemma (Good approximations, with heuristics)
Let L consist of the αn+o(n) shortest vectors of a lattice L, with α≥

p
2+ o(1). Then:

vol(VL)
vol(V)

= 1+ o(1). (1)

Lemma (Arbitrary approximations, with heuristics)
Let L consist of the αn+o(n) shortest vectors of a lattice L, with α ∈ (1.03396,

p
2). Then:

vol(VL)
vol(V)

≤

�

16α4
�

α2 − 1
�

−9α8 + 64α6 − 104α4 + 64α2 − 16

�n/2+o(n)

. (2)
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Dual approach
Distinguisher

L∗ = {x ∈ Rn : 〈x,v〉 ∈ Z,∀v ∈ L}
• Primal target vector t = v+ e with v ∈ L
• Short dual vector v∗ ∈ L∗

• Distinguisher:










〈t,v∗〉 mod 1= 0 if ‖e‖= 0;

〈t,v∗〉 mod 1≈ 0 if ‖e‖ ≈ 0 and ‖v∗‖ small;

〈t,v∗〉 mod 1∼ U(−1
2 , 1

2) if ‖e‖ � 0.
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Conclusion
Summary

Babai’s algorithms
• Fast and simple algorithms
• Targets must lie close to the lattice

Voronoi cells
• Provable, deterministic algorithm
• Requires 2n+o(n) time and space

Approximate Voronoi cells
• Heuristic alternative to exact Voronoi cells
• Nearest neighbor speed-ups
• Does not scale well for BDDP

Dual approach
• Distinguisher using short dual vectors
• Works better when target is somewhat close to lattice
• Traditionally only solves decisional problem
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Conclusion
Open problems / Work in progress

Approximate Voronoi cells
• Eliminate lower bound on space complexity
• Improve upper bound on volume ratio
• Apply other nearest neighbor techniques

Dual approach
• Analyze method heuristically
• Efficient conversion to search-CVPP
• Find cross-over point with other methods
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