

Approximate Voronoi cells for lattices, revisited

Thijs Laarhoven

mail@thijs.com
http://www.thijs.com/

CWG meeting, Utrecht, The Netherlands (September 6, 2019)

Lattices Basics

Lattices Basics

 b_1 b_2

Lattices

Basics

.

.

0

.

.

•

b₁

.

•

•

•

 b_2

•

.

.

.

.

•

•

•

.

•

•

•

.

.

•

•

•

.

.

.

.

.

.

.

.

•

•

.

Lattice problems

Shortest Vector Problem (SVP)

.

.

.

.

.

•

.

D

.

.

.

.

•

.

.

.

•

Lattice problems

Shortest Vector Problem (SVP)

.

.

.

.

.

•

.

D

.

.

.

.

•

.

.

.

•

Lattice problems

Closest Vector Problem (CVP)

.

.

~

•

.

.

.

•

.

.

•

D

.

.

.

.

.

.

-

 $t\star$

.

.

.

•

•

.

.

•

Lattice problems

Closest Vector Problem (CVP)

.

.

.

.

.

•

.

.

•

D

.

.

.

D

.

.

.

.

.

.

.

•

•

.

.

~

Lattice problems

Closest Vector Problem (CVP)

.

.

.

.

.

•

.

.

•

D

.

.

.

.

.

.

•

.

.

.

•

•

.

.

~

Lattice problems

Asymptotics for SVP and CVP

	Algorithm	log_2 (Time)	$log_2(Space)$	Experiments
Vorst-case SVP	Enumeration [Poh81, Kan83, FP85,]	$O(n \log n)$	$O(\log n)$	-
	AKS-sieve [AKS01, NV08, MV10, HPS11]	3.398n	1.985n	-
	Birthday sieves [PS09, HPS11]	2.465n	1.233n	-
	Enumeration/DGS hybrid [CCL17]	2.048n	0.500n	-
	Voronoi cell algorithm [AEVZ02, MV10b, BD15]	2.000n	1.000n	40
	Quantum sieve [LMP13, LMP15]	1.799n	1.286n	-
	Quantum enumeration/DGS hybrid [CCL17]	1.256n	0.500n	-
>	Discrete Gaussian sampling [ADRS15, ADS15, AS18]	1.000n	1.000n	-
Average-case SVP	Enumeration [GNR10, MW15, AN17]	$O(n \log n)$	$O(\log n)$	152
	The Nguyen–Vidick sieve [NV08]	0.415n	0.208n	50
	GaussSieve [MV10,, IKMT14, BNvdP16, YKYC17]	0.415n	0.208n	130*
	Triple sieve [BLS16, HK17]	0.396n	0.189n	80
	Kleinjung sieve [Kle14]	0.379n	0.189n	116
	Leveled sieving [WLTB11, ZPH13]	0.378n	0.283n	-
	Overlattice sieve [BGJ14]	0.377n	0.293n	90
	Triple sieve with NNS [HK17, HKL18]	0.359n	0.189n	76
	Single filters [DL17, ADH+19]	0.349n	0.246n	155
	Hyperplane LSH [Cha02, FBB+14, Laa15,, LM18]	0.337n	0.337n	107
	May–Ozerov NNS [MO15, BGJ15]	0.311n	0.311n	-
	Quantum sieve [LMP13]	0.311n	0.208n	-
	Spherical LSH [AINR14, LdW15]	0.297n	0.297n	-
	Cross-polytope LSH [TT07, AILRS15, BL16, KW17]	0.297n	0.297n	80
	Spherical LSF [BDGL16, MLB17, ALRW17, DSvW19]	0.292n	0.292n	157
	Quantum NNS sieve [LMP15, Laa16]	0.265n	0.265n	-

Lattice problems

Closest Vector Problem with Preprocessing (CVPP)

.

.

.

.

.....

.

.

.

.

.

.

~

.

.

.

~

Lattice problems

Closest Vector Problem with Preprocessing (CVPP)

.

.

a

.

.....

a

~

.

.

.

.

~

Lattice problems

Closest Vector Problem with Preprocessing (CVPP)

~

.

.

.

.

.

.

.

.

.

.

~

.

•

.

.

.

~

.

Lattice problems

Closest Vector Problem with Preprocessing (CVPP)

.

.

a

.

.

.

.

~

.

•

.

.

.

~

Lattice problems

Closest Vector Problem with Preprocessing (CVPP)

.

.

.....

.

a

~

•

.

.

.

.

Lattice problems

Closest Vector Problem with Preprocessing (CVPP)

.

.....

.

.

a

t 🗙

~

•

.

.

.

.

.

Lattice problems

Closest Vector Problem with Preprocessing (CVPP)

~

Lattice problems

Batch Closest Vector Problem

.....

.

.

.

.

.

~

•

.

.

.

•

.

.

.

 D_{2}

.

.

.

.

.

-

•

.

.

.

•

• 🔸

*

•

.

Lattice problems

Batch Closest Vector Problem

.

.

*

.

.

•

.....

.

a

.

.

.

.

.

•

.

.

.

•

.

.

Lattice problems

Batch Closest Vector Problem

.

.

.

.

.

.

Lattice problems Why study CVPP?

Concrete applications

- Speeding up lattice enumeration for SVP or CVP [GNR10]
- Solving approximate SVP on ideal lattices [PHS19]
- Computing class group actions in a relation lattice [BKV19]

Commonly a lattice basis (public key) is known long before the target vectors (encryptions, signatures)

Voronoi cells

•

.

0

.

.

•

.

•

•

.

•

.

•

.

.

•

.

.

.

•

•

.

.

•

Voronoi tiling

•

.

.

.

•

•

•

.

.

.

.

.

•

•

•

.

•

TU/e Voronoi cells Voronoi tiling • . • . • . • • . . . • • . • . . • • • • • . • . • . . • • . • . . • . •

Voronoi cells

Relevant vectors

~

.

.

.

.

.

•

.

.

.

.

•

•

•

•

.

.

a

.

a

•

.

Voronoi cells

Relevant vectors

 r_2

 \bar{r}_5

 \tilde{r}_6

.

.

.....

.

.

.

 r_3

 r_4

.

.

.

.

•

•

.

a

.

.

Voronoi cells

.

.

.

•

.

.

.

.

.

.

.

.

.

.

•

.

•

•

.

•

Relevant vectors

•

.

.

•

•

.

.

.

.

.

•

•

•

.

TU/e Voronoi cells **Relevant vectors** • . . . • . • • . . • • • . • • • • • • . • • . • •

Voronoi cells

Iterative slicer [SFS09]

•

•

.

.

.

•

•

•

.

*

•

•

.

.

•

.

.

•

.

.

•

.

•

.

.

•

Voronoi cells

Iterative slicer [SFS09]

•

•

.

.

.

•

•

•

.

•

.

.

•

.

.

•

.

.

•

.

•

.

.

•

Voronoi cells

Iterative slicer [SFS09]

•

.

.

•

.

•

•

•

.

.

.

•

.

.

•

.

.

•

.

•

.

.

•

Voronoi cells

Iterative slicer [SFS09]

•

.

.

•

.

.

•

•

•

•

.

•

.

.

•

.

.

•

.

•

.

.

•

•

Voronoi cells

Iterative slicer [SFS09]

.

.

.

•

•

•

•

.

.

•

.

•

.

.

.

.

.

•

.

.

•

Voronoi cells

Iterative slicer [SFS09]

•

.

.

•

.

•

•

.

.

•

.

•

.

.

.

.

.

•

.

.

•

Voronoi cells

Iterative slicer [SFS09]

•

•

•

•

.

.

•

.

•

.

.

.

.

.

.

.

•

.

.

•

Voronoi cells

Iterative slicer [SFS09]

•

.

.

•

.

.

•

.

.

.

.

.

•

.

•

.

•

Voronoi cells

Iterative slicer [SFS09]

•

.

.

•

.

.

•

.

.

.

.

.

•

.

•

.

.

•

Voronoi cells

Iterative slicer [SFS09]

•

•

.

•

.

•

•

•

.

•

.

.

•

.

.

•

.

.

•

.

•

.

.

•

Approximate Voronoi cells

Decrease list size

.

.

 \cap

.

.

.

.

.

•

.

.

.

•

.

.

.

-

.

.

.

.

.

.

•

•

-

.

.

.

.

.

.

.

.

•

•

Approximate Voronoi cells

Decrease list size

.

.

•

V₂

 V_3

•

.

V₁

V4

.

.

•

.

.

-

•

.

.

.

•

-

.

.

.

.

.

.

.

.

•

•

Approximate Voronoi cells

Decrease list size

Õ

.

.

V₂

• V3

.

•

.

•

~

.

.

.

.

V₁

V4

Approximate Voronoi cells

Decrease list size

.

.

V₂

• V3

.

•

.

•

~

.

.

.

.

V₁

V4

Approximate Voronoi cells

Decrease list size

.

.

.

.

.

.

.

.

a

.

.

.

•

.

.

.

.

•

a

•

.

•

Approximate Voronoi cells

Improper tiling

.

.

.

.

.

.

Approximate Voronoi cells

Improper tiling

.

.

-

.

.

 $\mathbf{\star}$

.

.

.

Approximate Voronoi cells

Improper tiling

.

.

-

.

.

.

.

.

Approximate Voronoi cells

Improper tiling

.

.

-

.

.

.

.

Approximate Voronoi cells

Iterative slicer [SFS09]

.

.

.

.

-

.

Approximate Voronoi cells

Iterative slicer [SFS09]

.

.

.

.

-

Approximate Voronoi cells

Iterative slicer [SFS09]

-

.

.

.

Approximate Voronoi cells

Iterative slicer [SFS09]

-

.

.

.

Approximate Voronoi cells

Iterative slicer [SFS09]

.

.

-

Approximate Voronoi cells

Iterative slicer [SFS09]

-

Approximate Voronoi cells

Iterative slicer [SFS09]

Approximate Voronoi cells

Iterative slicer [SFS09]

-

Approximate Voronoi cells

Iterative slicer [SFS09]

.

.

.

.

Approximate Voronoi cells

Randomized slicer [DLW19]

.

.

.

.

.

Approximate Voronoi cells

Randomized slicer [DLW19]

.

.

Approximate Voronoi cells

Randomized slicer [DLW19]

-

Approximate Voronoi cells

Randomized slicer [DLW19]

Approximate Voronoi cells

Randomized slicer [DLW19]

Approximate Voronoi cells

Randomized slicer [DLW19]

Approximate Voronoi cells

Randomized slicer [DLW19]

-

.

.

.

Approximate Voronoi cells

Success probability estimation

Main problem: Success probability *p* of the iterative slicer?

Approximate Voronoi cells

Success probability estimation

Main problem: Success probability p of the iterative slicer?

Attempt 1: [DLW19]

- Directly obtained a lower bound on *p* via the slicer
- Conjectured that *p* is exactly proportional to $vol(V)/vol(V_L)$
- Open problem: obtain a tight analysis, perhaps via $vol(V)/vol(V_L)$

Approximate Voronoi cells

Success probability estimation

Main problem: Success probability *p* of the iterative slicer?

Attempt 1: [DLW19]

- Directly obtained a lower bound on *p* via the slicer
- Conjectured that *p* is exactly proportional to $vol(V)/vol(V_L)$
- Open problem: obtain a tight analysis, perhaps via $vol(V)/vol(V_L)$

Attempt 2: [Laa19]

- Proved tight bounds on $vol(V)/vol(V_L)$ under the Gaussian heuristic
- Results show that *p* cannot be (exactly) proportional to $vol(\mathcal{V})/vol(\mathcal{V}_L)$
- From $p \ge \operatorname{vol}(\mathcal{V})/\operatorname{vol}(\mathcal{V}_L)$ we obtain new lower bounds on p
- No nonsensical asymptote at 2^{0.05d} memory anymore

Approximate Voronoi cells

Lower bounds on success probability

Approximate Voronoi cells

Time-space trade-offs for CVPP

Conclusion

Voronoi cells

- Solves CVPP exactly in the worst case for all lattices
- Requires too much space (and time) to be useful

Conclusion

Voronoi cells

- Solves CVPP exactly in the worst case for all lattices
- Requires too much space (and time) to be useful

Approximate Voronoi cells

- Offers heuristic alternative to exact Voronoi cells
- Success probability analysis:
 - Original analysis did not appear to be tight
 - Conjectured that tighter bounds may be obtained via $vol(V)/vol(V_L)$
 - ▶ New results obtained tight bounds on the ratio $vol(V)/vol(V_L)$
 - Resulted in better CVPP complexities for low-memory regime
 - Unfortunately, approach via $vol(V)/vol(V_L)$ is not tight either

Conclusion

Voronoi cells

- Solves CVPP exactly in the worst case for all lattices
- Requires too much space (and time) to be useful

Approximate Voronoi cells

- Offers heuristic alternative to exact Voronoi cells
- Success probability analysis:
 - Original analysis did not appear to be tight
 - Conjectured that tighter bounds may be obtained via $vol(V)/vol(V_L)$
 - ▶ New results obtained tight bounds on the ratio $vol(V)/vol(V_L)$
 - Resulted in better CVPP complexities for low-memory regime
 - ▶ Unfortunately, approach via $vol(V)/vol(V_L)$ is not tight either

Open problems

- Obtain truly tight bounds (ongoing work with Leo Ducas, Wessel van Woerden)
- Find an efficient BDDP-version of this CVPP algorithm