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Quantum Search
General form

Problem: Given a list L of size N, and a function f : L→ {0, 1}
such that there are c = O(1) elements e ∈ L with f (e) = 1. Find
one such element e.

• Classical search: Θ(N/c) time
• Quantum search: Θ(

√
N/c) time [Gro96]



Applications
(Why do we care?)

• “Constructive cryptography”: Lattice-based cryptosystems
I Based on hard lattice problems (SVP, CVP)
I NTRU cryptosystem [HPS98]
I Fully Homomorphic Encryption [Gen09]
I Candidate for post-quantum cryptography ("survivor")

• “Destructive cryptography”: Cryptanalysis

I Attack knapsack-based cryptosystems [Sha82, LO85]
I Attack RSA with Coppersmith’s method [Cop97]
I Attack DSA and ECDSA [NS02, NS03]
I Attack lattice-based cryptosystems [Ngu99, JJ00]

How (quantum-)hard are hard lattice problems such as SVP?
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Studied since the early ’80s [Poh81, Kan83, FP85, . . ., GNR10]
1. “Guess” the coordinate of the basis vector bn

2. Find a shortest vector, given the nth coordinate
(Reduction to n − 1 dimensions)

3. Search for a shortest vector among all of these vectors
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Classical Quantum
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Table: Complexities of SVP algorithms in logarithmic leading order terms:

Classical Quantum
Algorithm Time Space Time Space

Enum. [GNR10] O(n log n) O(log n) O(n log n) O(log n)
Sieving [LMP13] 0.42n 0.21n 0.32n 0.21n
Saturation [LMP13] 0.52n 0.21n 0.39n 0.21n
Voronoi cell [MV10] 2.00n 1.00n 2.00n 1.00n



Conclusion

Using Grover search speeds up some SVP algorithms
• Faster sieving algorithms (exponent: ≈ −25%)
• Faster saturation algorithms (exponent: ≈ −25%)

Open quantum-problems
• Quantum speed-ups for other methods?
• Use other quantum algorithms?
• Build a quantum computer?



Questions
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