

Quantum Cryptanalysis of Post-Quantum Cryptography

Thijs Laarhoven, Michele Mosca, Joop van de Pol

mail@thijs.com http://www.thijs.com/

SIAM AG'13, Fort Collins, USA (August 3, 2013)

Solving the Shortest Vector Problem in Lattices Faster Using Quantum Search

Thijs Laarhoven, Michele Mosca, Joop van de Pol

mail@thijs.com http://www.thijs.com/

SIAM AG'13, Fort Collins, USA (August 3, 2013)

Outline

Introduction

Lattices Quantum Search Applications

SVP Algorithms

Enumeration Sieving Saturation

Overview

Conclusion

Lattices

What is a lattice?

Lattices

What is a lattice?

b₁₄ *b₂

.

•

Lattices

What is a lattice?

.

Lattices

Lattice Basis Reduction

Lattices

• Shortest Vector Problem (SVP)

Lattices

• Shortest Vector Problem (SVP)

Lattices

Closest Vector Problem (CVP)

•

Lattices

Closest Vector Problem (CVP)

•

TU/e

Classical form

Problem: Given a list *L* of size *N*, and a function $f : L \to \{0, 1\}$ such that there is exactly one element $e \in L$ with f(e) = 1. Find this element *e*.

Classical form

Problem: Given a list *L* of size *N*, and a function $f : L \to \{0, 1\}$ such that there is exactly one element $e \in L$ with f(e) = 1. Find this element *e*.

• Classical search: $\Theta(N)$ time

TU/e

Classical form

Problem: Given a list *L* of size *N*, and a function $f : L \to \{0, 1\}$ such that there is exactly one element $e \in L$ with f(e) = 1. Find this element *e*.

• Classical search: $\Theta(N)$ time

TU/e

• Quantum search: $\Theta(\sqrt{N})$ time [Gro96] •

General form

Problem: Given a list *L* of size *N*, and a function $f : L \to \{0, 1\}$ such that there are c = O(1) elements $e \in L$ with f(e) = 1. Find one such element *e*.

• Classical search: $\Theta(N/c)$ time

TU/e

• Quantum search: $\Theta(\sqrt{N/c})$ time [Gro96]

Applications

(Why do we care?)

• "Constructive cryptography": Lattice-based cryptosystems

- Based on hard lattice problems (SVP, CVP)
- NTRU cryptosystem [HPS98]
- Fully Homomorphic Encryption [Gen09]
- Candidate for post-quantum cryptography ("survivor")

Applications

(Why do we care?)

• "Constructive cryptography": Lattice-based cryptosystems

- Based on hard lattice problems (SVP, CVP)
- NTRU cryptosystem [HPS98]
- Fully Homomorphic Encryption [Gen09]
- Candidate for post-quantum cryptography ("survivor")
- "Destructive cryptography": Cryptanalysis
 - Attack knapsack-based cryptosystems [Sha82, LO85]
 - Attack RSA with Coppersmith's method [Cop97]
 - Attack DSA and ECDSA [NS02, NS03]
 - Attack lattice-based cryptosystems [Ngu99, JJ00]

Applications

(Why do we care?)

• "Constructive cryptography": Lattice-based cryptosystems

- Based on hard lattice problems (SVP, CVP)
- NTRU cryptosystem [HPS98]
- Fully Homomorphic Encryption [Gen09]
- Candidate for post-quantum cryptography ("survivor")
- "Destructive cryptography": Cryptanalysis
 - Attack knapsack-based cryptosystems [Sha82, LO85]
 - Attack RSA with Coppersmith's method [Cop97]
 - Attack DSA and ECDSA [NS02, NS03]
 - Attack lattice-based cryptosystems [Ngu99, JJ00]

How (quantum-)hard are hard lattice problems such as SVP?

Studied since the early '80s [Poh81, Kan83, FP85, ..., GNR10]
1. "Guess" the coordinate of the basis vector b_n

Studied since the early '80s [Poh81, Kan83, FP85, ..., GNR10]

- 1. "Guess" the coordinate of the basis vector b_{n} .
- 2. Find a shortest vector, given the *n*th coordinate (Reduction to n 1 dimensions)

Studied since the early '80s [Poh81, Kan83, FP85, ..., GNR10]

- 1. "Guess" the coordinate of the basis vector b_{n^*}
- 2. Find a shortest vector, given the *n*th coordinate (Reduction to n 1 dimensions)

3. Search for a shortest vector among all of these vectors

Enumeration

Bound on the size of s

Enumeration

Bound on the size of s

Enumeration

Possible coefficients of *b*₂

b₁

b₂

Enumeration

Possible coefficients of *b*₂

b₁

b₂

b₂

Possible coefficients of b_2

D1

 b_2

b

.

. TU/e

1-2. Guess the coefficient of b_2 and find "shortest vectors"

D1

b₂

b

Enumeration

1-2. Guess the coefficient of β_2 and find "shortest vectors"

DI

 b_2

b₂

Enumeration

1-2. Guess the coefficient of β_2 and find "shortest vectors"

Vo

b1

 b_2

-V0

b₂

Enumeration

1-2. Guess the coefficient of β_2 and find "shortest vectors"

Vo

b1

 b_2

-V0

b

Enumeration

1-2. Guess the coefficient of β_2 and find "shortest vectors"

Vo

b1

 b_2

-V0

b

Enumeration

1-2. Guess the coefficient of β_2 and find "shortest vectors"

Vo

b1

b₂

-V0

b₂

Enumeration

1-2. Guess the coefficient of b_2 and find "shortest vectors"

Vo

b1

b₂

V₀

b

Enumeration

1-2. Guess the coefficient of β_2 and find "shortest vectors"

Vo

b1

b₂

V₀

b

Enumeration

1-2. Guess the coefficient of b_2 and find "shortest vectors"

Vo

b1

b₂

V₀

b

V3

1-2. Guess the coefficient of b_2 and find "shortest vectors"

b₂

V3

V₀

.

. TU/e
. TU/e

Enumeration

.

3. Find a shortest vector among all of them

V₀

b1

b₂

V₀

b

V3

. TU/e

Enumeration

.

3. Find a shortest vector among all of them

V₀

b1

b₂

-V0

b

V3

Enumeration

Studied since the early '80s [Poh81, Kan83, FP85, ..., GNR10]

1. "Guess" the coordinate of the basis vector b_n

- 2. Find a shortest vector, given the *n*th coordinate (Reduction to n 1 dimensions)
- 3. Search for a shortest vector among all of these vectors

Enumeration

Studied since the early '80s [Poh81, Kan83, FP85, ..., GNR10]

1. "Guess" the coordinate of the basis vector b_n

2. Find a shortest vector, given the *n*th coordinate (Reduction to n - 1 dimensions)

3. Search for a shortest vector among all of these vectors Complexity?

Enumeration

Studied since the early '80s [Poh81, Kan83, FP85, ..., GNR10]

1. "Guess" the coordinate of the basis vector b_n

2. Find a shortest vector, given the *n*th coordinate (Reduction to n - 1 dimensions)

3. Search for a shortest vector among all of these vectors Complexity?

• Space: poly(n)

Enumeration

Studied since the early '80s [Poh81, Kan83, FP85, ..., GNR10]

1. "Guess" the coordinate of the basis vector b_n

2. Find a shortest vector, given the *n*th coordinate (Reduction to n - 1 dimensions)

3. Search for a shortest vector among all of these vectors Complexity?

- Space: poly(n)
- Time: 2^{O(n log n)} [Kan83]

Enumeration

Studied since the early '80s [Poh81, Kan83, FP85, ..., GNR10]

1. "Guess" the coordinate of the basis vector b_n

2. Find a shortest vector, given the *n*th coordinate (Reduction to n - 1 dimensions)

3. Search for a shortest vector among all of these vectors Complexity?

• Space: poly(n)

U/e

• Time: 2^{O(n log n)} [Kan83]

Asymptotically suboptimal time complexity

Studied since 2001 [AKS01, Reg04, NV08, \ldots , HPS11]

1. Generate a long list V of random lattice vectors

Studied since 2001 [AKS01, Reg04, NV08, ..., HPS11]

1. Generate a long list V of random lattice vectors

2. Split V into two sets C (centers, cover) and R (rest):

• Set
$$C = \emptyset$$
 and $R = \emptyset$

For each $v \in V$, find the closest $c \in C$

• If
$$||v - c||$$
 is "large", add v to C

▶ If
$$||v - c||$$
 is "small", add $v - c$ to R

Studied since 2001 [AKS01, Reg04, NV08, ..., HPS11]

- 1. Generate a long list V of random lattice vectors
- 2. Split V into two sets C (centers, cover) and R (rest):
 - Set $C = \emptyset$ and $R = \emptyset$
 - For each $v \in V$, find the closest $c \in C$
 - If ||v c|| is "large", add v to C
 - If ||v c|| is "small", add v c to R

3. Set V = R and repeat until V contains a shortest vector

. TU/e

.

Sieving.

. 1. Generate random lattice vectors .

V₆

Sieving. 3. Repeat until V contains a shortest vector V_8 V₁₄ V₅ V₁₂ V₁₁ V۱ V₇ v₄ V₃ V₈ **V**7 V₂ V3 V₉ V₆ V₂ V₅ V₁₀ V₉

V4

.

V₁

V₁₃

V₆

Sieving. 3. Repeat until V contains a shortest vector V_8 V₁₄ V₅ V₁₂ V₁₁ V۱ V₇ v₄ V₃ V₈ **V**7 V₂ V₃ V₉ V₆ V₂ V₅ V₁₀ V₉

V4

.

V₁

V₁₃

Studied since 2001 [AKS01, Reg04, NV08, ..., HPS11]

- 1. Generate a long list V of random lattice vectors
- 2. Split V into two sets C (centers, cover) and R (rest):
 - Set $C = \emptyset$ and $R = \emptyset$

TU/e

- For each $v \in V$, find the closest $c \in C$
 - If ||v c|| is "large", add v to C
 - ▶ If ||v c|| is "small", add v c to R

3. Set V = R and repeat until V contains a shortest vector

Studied since 2001 [AKS01, Reg04, NV08, ..., HPS11]

1. Generate a long list V of random lattice vectors

2. Split V into two sets C (centers, cover) and R (rest):

• Set
$$C = \emptyset$$
 and $R = \emptyset$

TU/e

For each $v \in V$, find the closest $c \in C$

• If ||v - c|| is "large", add v to C

▶ If ||v - c|| is "small", add v - c to R

3. Set *V* = *R* and repeat until *V* contains a shortest vector Complexity?

Studied since 2001 [AKS01, Reg04, NV08, ..., HPS11]

- 1. Generate a long list V of random lattice vectors
- 2. Split V into two sets C (centers, cover) and R (rest):
 - Set $C = \emptyset$ and $R = \emptyset$

TU/e

- For each $v \in V$, find the closest $c \in C$
 - If ||v c|| is "large", add v to C
 - If ||v c|| is "small", add v c to R

3. Set *V* = *R* and repeat until *V* contains a shortest vector Complexity?

• Space: $|V|, |C|, |R| \leq 2^{\alpha n}$ for some α

Studied since 2001 [AKS01, Reg04, NV08, ..., HPS11]

- 1. Generate a long list V of random lattice vectors
- 2. Split V into two sets C (centers, cover) and R (rest):
 - Set $C = \emptyset$ and $R = \emptyset$
 - For each $v \in V$, find the closest $c \in C$
 - If ||v c|| is "large", add v to C
 - If ||v c|| is "small", add v c to R

3. Set *V* = *R* and repeat until *V* contains a shortest vector Complexity?

- Space: $|V|, |C|, |R| \leq 2^{\alpha n}$ for some α
- Classical Time:

TU/e
Studied since 2001 [AKS01, Reg04, NV08, ..., HPS11]

- 1. Generate a long list V of random lattice vectors
- 2. Split V into two sets C (centers, cover) and R (rest):
 - Set $C = \emptyset$ and $R = \emptyset$

TU/e

- For each $v \in V$, find the closest $c \in C$
 - If ||v c|| is "large", add v to C
 - If ||v c|| is "small", add v c to R

3. Set *V* = *R* and repeat until *V* contains a shortest vector Complexity?

- Space: $|V|, |C|, |R| \leq 2^{\alpha n}$ for some α
- Classical Time: $\approx 2^{\alpha n} \cdot 2^{\alpha n} = 2^{2\alpha n}$

Studied since 2001 [AKS01, Reg04, NV08, ..., HPS11]

- 1. Generate a long list V of random lattice vectors
- 2. Split V into two sets C (centers, cover) and R (rest):
 - Set $C = \emptyset$ and $R = \emptyset$
 - For each $v \in V$, find the closest $c \in C$
 - If ||v c|| is "large", add v to C
 - If ||v c|| is "small", add v c to R

3. Set *V* = *R* and repeat until *V* contains a shortest vector Complexity?

- Space: $|V|, |C|, |R| \leq 2^{\alpha n}$ for some α
- Classical Time: $\approx 2^{\alpha n} \cdot 2^{\alpha n} = 2^{2\alpha n}$
- Quantum Time:

TU/e

Studied since 2001 [AKS01, Reg04, NV08, ..., HPS11]

- 1. Generate a long list V of random lattice vectors
- 2. Split V into two sets C (centers, cover) and R (rest):
 - Set $C = \emptyset$ and $R = \emptyset$

TU/e

- For each $v \in V$, find the closest $c \in C$
 - If ||v c|| is "large", add v to C
 - If ||v c|| is "small", add v c to R

3. Set *V* = *R* and repeat until *V* contains a shortest vector Complexity?

- Space: $|V|, |C|, |R| \leq 2^{\alpha n}$ for some α
- Classical Time: $\approx 2^{\alpha n} \cdot 2^{\alpha n} = 2^{2\alpha n}$
- Quantum Time: $\approx 2^{\alpha n} \cdot \sqrt{2^{\alpha n}} = 2^{\frac{3}{2}\alpha n}$

Studied since 2001 [AKS01, Reg04, NV08, ..., HPS11]

- 1. Generate a long list V of random lattice vectors
- 2. Split V into two sets C (centers, cover) and R (rest):
 - Set $C = \emptyset$ and $R = \emptyset$

TU/e

- For each $v \in V$, find the closest $c \in C$
 - If ||v c|| is "large", add v to C
 - If ||v c|| is "small", add v c to R

3. Set *V* = *R* and repeat until *V* contains a shortest vector Complexity?

- Space: $|V|, |C|, |R| \leq 2^{\alpha n}$ for some α
- Classical Time: $\approx 2^{\alpha n} \cdot 2^{\alpha n} = 2^{2\alpha n}$
- Quantum Time: $\approx 2^{\alpha n} \cdot \sqrt{2^{\alpha n}} = 2^{\frac{3}{2}\alpha n}$
- Quantum speed-up: pprox 25% in the exponent $\,\cdot\,$

Studied since 2009 [MV10, PS09, Sch11, IKMT13]

1. Generate a long list V of random lattice vectors

Studied since 2009 [MV10, PS09, Sch11, IKMT13]

- 1. Generate a long list V of random lattice vectors
- 2. "Reduce the vectors with each other":
 - Set $C = \emptyset$
 - For each $v \in V$, find the closest vector $c \in C$
 - ▶ If ||v c|| < ||v||, set $v \leftarrow v c$ and find new closest $c \in C$ ▶ If $||v - c|| \ge ||v||$, add v to C

Studied since 2009 [MV10, PS09, Sch11, IKMT13]

- 1. Generate a long list V of random lattice vectors
- 2. "Reduce the vectors with each other":
 - Set $C = \emptyset$
 - For each $v \in V$, find the closest vector $c \in C$
 - ▶ If ||v c|| < ||v||, set $v \leftarrow v c$ and find new closest $c \in C$ ▶ If $||v - c|| \ge ||v||$, add v to C

3. Search *C* for a shortest vector

.

Saturation

.

. 1. Generate random lattice vectors .

Saturation

.

V₁₂

V₁₀

V₅

V₃

V₂

V₆

. 1. Generate random lattice vectors .

V₁₄

v₈

V₁₁

٧g

V₁₃

V4

V₁

V7

Saturation

.

V₁₂

V₁₀

V₅

V₃

V₂

V₆

2. Reduce the vectors with each other

V₁₄

V₈

V₁₁

V₉

V4

V₁₃

V1

Saturation

.

V₁₂

V₁₀

V₅

V₃

V₂

V₆

2. Reduce the vectors with each other

V₁₄

V₈

V₁₁

V₉

V4

V₁₃

V1

V₅

V₃

V₆

V₁₂

V₁₀

Saturation

2. Reduce the vectors with each other

V₁₄

V₈

 V_{11}

V₉

V₄

V₁₃

V₁

V4

V₈

V₁₁

V₁

Saturation

.

V₁₂

V₁₀

V₅

V₃

V₂

V₆

2. Reduce the vectors with each other

V₃

V₁₄

v₂

٧g

V₁₃

V₈

V₁₁

V1

V₅

V₃

V₂

V₆

V₁₂

V₁₀

Saturation

2. Reduce the vectors with each other

V₃

V₁₄

V₂

V₄

V9

V₁₃

V₈

V₁₁

٧ı

V₅

V₃

V₂

V₆

V₁₂

V₁₀

Saturation

2. Reduce the vectors with each other

V₃

V₁₄

v₂

V4

V9

V₁₃

V₈

V₁₁

V₁

V7

V₅

V₃

V₂

V₆

V₁₂

V₁₀

Saturation

2. Reduce the vectors with each other

V₃

V₁₄

V₂

V₈

V₁₁

V₁₃

٧ı

Saturation

.

V₁₂

V₅

V₃

V₂

V₆

2. Reduce the vectors with each other

V₃

V₁₄

V₂

V9

V₁₃

v₄

V4

V₈

V₁₁

٧ı

Ň7

Saturation

.

V₁₀

V₅

V₃

V₂

V₆

2. Reduce the vectors with each other

V₈

V₁₁

٧g

V₁₃

Ň7

V4

Saturation

.

V₁₂

V₁₀

V₅

V₃

V₂

V₆

2. Reduce the vectors with each other

V₃

V₁₄

v₂

V₉

13

V₄

V₄

V₈

 V_{11}

٧ı

V₅

V₃

V₂

V₁₀

V₆

Saturation

V₈

V₁₁

V9

V4

V₁₃

٧ı

Ň7

Saturation

.

V₁₂

V₁₀

V₅

V₃

V₂

V₆

2. Reduce the vectors with each other

V₃

V₁₄

V₂

V₉

V₁₃

 v_4

V4

V₈

V₁₁

V1

V₅

V₃

V₂

V₆

V₁₂

V₁₀

Saturation

3. Search *C* for a shortest vector

V₃

V₁₄

V₂

V₉

V₁₃

 v_4

V4

V₈

V₁₁

V₁

V₅

V₃

V₂

V₆

V₁₂

V₁₀

Saturation

3. Search *C* for a shortest vector

V₃

V₁₄

V₂

V₉

V₁₃

v₄

V4

V₈

V₁₁

V₁

Studied since 2009 [MV10, PS09, Sch11, IKMT13]

- 1. Generate a long list V of random lattice vectors
- 2. "Reduce the vectors with each other":
 - Set $C = \emptyset$

TU/e

- For each $v \in V$, find the closest vector $c \in C$
 - ▶ If ||v c|| < ||v||, set $v \leftarrow v c$ and find new closest $c \in C$ ▶ If $||v - c|| \ge ||v||$, add v to C

3. Find a shortest vector among the reduced vectors

Studied since 2009 [MV10, PS09, Sch11, IKMT13]

- 1. Generate a long list V of random lattice vectors
- 2. "Reduce the vectors with each other":
 - Set $C = \emptyset$

TU/e

- For each $v \in V$, find the closest vector $c \in C$
 - ▶ If ||v c|| < ||v||, set $v \leftarrow v c$ and find new closest $c \in C$ ▶ If $||v - c|| \ge ||v||$, add v to C

Studied since 2009 [MV10, PS09, Sch11, IKMT13]

- 1. Generate a long list V of random lattice vectors
- 2. "Reduce the vectors with each other":
 - Set $C = \emptyset$

TU/e

- For each $v \in V$, find the closest vector $c \in C$
 - ▶ If ||v c|| < ||v||, set $v \leftarrow v c$ and find new closest $c \in C$ ▶ If $||v - c|| \ge ||v||$, add v to C

3. Find a shortest vector among the reduced vectors Complexity?

• Space: $|V|, |C|, |R| \leq 2^{\alpha n}$ for some α

Studied since 2009 [MV10, PS09, Sch11, IKMT13]

- 1. Generate a long list V of random lattice vectors
- 2. "Reduce the vectors with each other":
 - Set $C = \emptyset$

TU/e

- For each $v \in V$, find the closest vector $c \in C$
 - ▶ If ||v c|| < ||v||, set $v \leftarrow v c$ and find new closest $c \in C$ ▶ If $||v - c|| \ge ||v||$, add v to C

- Space: $|V|, |C|, |R| \leq 2^{\alpha n}$ for some α
- Classical Time:

Studied since 2009 [MV10, PS09, Sch11, IKMT13]

- 1. Generate a long list V of random lattice vectors
- 2. "Reduce the vectors with each other":
 - Set $C = \emptyset$

TU/e

- For each $v \in V$, find the closest vector $c \in C$
 - ▶ If ||v c|| < ||v||, set $v \leftarrow v c$ and find new closest $c \in C$ ▶ If $||v - c|| \ge ||v||$, add v to C

- Space: $|V|, |C|, |R| \leq 2^{\alpha n}$ for some α
- Classical Time: $\approx 2^{\alpha n} \cdot 2^{\alpha n} = 2^{2\alpha n}$

Studied since 2009 [MV10, PS09, Sch11, IKMT13]

- 1. Generate a long list V of random lattice vectors
- 2. "Reduce the vectors with each other":
 - Set $C = \emptyset$

TU/e

- For each $v \in V$, find the closest vector $c \in C$
 - ▶ If ||v c|| < ||v||, set $v \leftarrow v c$ and find new closest $c \in C$ ▶ If $||v - c|| \ge ||v||$, add v to C

- Space: $|V|, |C|, |R| \leq 2^{\alpha n}$ for some α
- Classical Time: $\approx 2^{\alpha n} \cdot 2^{\alpha n} = 2^{2\alpha n}$
- Quantum Time:

Studied since 2009 [MV10, PS09, Sch11, IKMT13]

- 1. Generate a long list V of random lattice vectors
- 2. "Reduce the vectors with each other":
 - Set $C = \emptyset$

TU/e

- For each $v \in V$, find the closest vector $c \in C$
 - ▶ If ||v c|| < ||v||, set $v \leftarrow v c$ and find new closest $c \in C$ ▶ If $||v - c|| \ge ||v||$, add v to C

- Space: $|V|, |C|, |R| \leq 2^{\alpha n}$ for some α
- Classical Time: $\approx 2^{\alpha n} \cdot 2^{\alpha n} = 2^{2\alpha n}$
- Quantum Time: $\approx 2^{\alpha n} \cdot \sqrt{2^{\alpha n}} = 2^{\frac{3}{2}\alpha n}$

Studied since 2009 [MV10, PS09, Sch11, IKMT13]

- 1. Generate a long list V of random lattice vectors
- 2. "Reduce the vectors with each other":
 - Set $C = \emptyset$

TU/e

- For each $v \in V$, find the closest vector $c \in C$
 - ▶ If ||v c|| < ||v||, set $v \leftarrow v c$ and find new closest $c \in C$ ▶ If $||v - c|| \ge ||v||$, add v to C

- Space: $|V|, |C|, |R| \leq 2^{\alpha n}$ for some α
- Classical Time: $\approx 2^{\alpha n} \cdot 2^{\alpha n} = 2^{2\alpha n}$
- Quantum Time: $\approx 2^{\alpha n} \cdot \sqrt{2^{\alpha n}} = 2^{\frac{3}{2}\alpha n}$
- Quantum speed-up: pprox 25% in the exponent $\,\cdot\,$

TU/e

Overview

Provable results (large *n* **asymptotics)**

Table: Complexities of SVP algorithms in logarithmic leading order terms:

•	0	Classical		Quantum	
	Algorithm	• Time	Space	Time	Space
	Enum. [Kan83]	$O(n \log n)$	$O(\log n)$	$O(n \log n)$	$O(\log n)$
	Sieving [PS09]	-2.65 <i>n</i>	1.33 <i>n</i>	2.65 <i>n</i>	• 1.33 <i>n</i>
	Saturation [PS09]	2.47 <i>n</i>	•1.24 <i>n</i>	2.47 <i>n</i>	1.24 <i>n</i>
0	Voronoi cell [MV10]	2.00 <i>n</i>	1.00 <i>n</i>	• 2.00 <i>n</i>	1.00 <i>n</i>
Overview

Provable results (large *n* **asymptotics)**

Table: Complexities of SVP algorithms in logarithmic leading order terms:

-						
0	0	[•] Classical		Quantum		
	Algorithm	• Time	Space	Time	Space	
	Enum. [Kan83]	$O(n \log n)$	$O(\log n)$	$O(n \log n)$	$O(\log n)$	
	Sieving [PS09]	∘2.65 <i>n</i>	1.33 <i>n</i>	2.65 <i>n</i>	• 1.33 <i>n</i>	
	Saturation [LMP13] •	2.47 <i>n</i>	•1.24 <i>n</i>	1.80n	1.29n	
•	Voronoi cell [MV10]	2.00 <i>n</i>	1.00 <i>n</i>	• 2.00 <i>n</i>	1.00 <i>n</i>	

Overview

Heuristic/Experimental results ($n \approx 100$)

Table: Complexities of SVP algorithms in logarithmic leading order terms:

0	0	[•] Classical		Quantum	
	Algorithm	• Time	Space	Time	 Space
	Enum. [GNR10]	$O(n \log n)$	$O(\log n)$	$O(n \log n)$	$O(\log n)$
	Sieving [NV08]	•0.42 <i>n</i>	0.21 <i>n</i>	0.42 <i>n</i>	0.21 <i>n</i>
	Saturation [MV10]	0.52 <i>n</i>	0.21 <i>n</i>	0.52 <i>n</i>	0.21 <i>n</i>
0	Voronoi cell [MV10]	2.00 <i>n</i>	1.00 <i>n</i>	• 2.00 <i>n</i>	1.00 <i>n</i>

Overview

Heuristic/Experimental results ($n \approx 100$)

Table: Complexities of SVP algorithms in logarithmic leading order terms:

•	٥	Classical		Quantum	
	Algorithm	• Time	Space	Time	Space
•	Enum. [GNR10]	$O(n \log n)$	$O(\log n)$	$O(n \log n)$	$O(\log n)$
	Sieving [LMP13]	₀0.42 <i>n</i>	0.21 <i>n</i>	0.32n	• 0.21n
	Saturation [LMP13] •	0.52 <i>n</i>	0.21 <i>n</i>	0.39n	0.21n
•	Voronoi cell [MV10]	2.00 <i>n</i>	1.00 <i>n</i>	• 2.00 <i>n</i>	1.00 <i>n</i>

Conclusion

Using Grover search speeds up some SVP algorithms

- Faster sieving algorithms (exponent: $\approx -25\%$)
- Faster saturation algorithms (exponent: $\approx -25\%$) Open quantum-problems
 - Quantum speed-ups for other methods?
 - Use other quantum algorithms?
 - Build a quantum computer?

Questions

