
Quantum Cryptanalysis of
Post-Quantum Cryptography

Thijs Laarhoven, Michele Mosca, Joop van de Pol

t.m.m.laarhoven@tue.nl
http://www.thijs.com/

PQCrypto 2013, Limoges, France
(June 6, 2013)

t.m.m.laarhoven@tue.nl
http://www.thijs.com/


Solving the Shortest Vector Problem in
Lattices Faster Using Quantum Search

Thijs Laarhoven, Michele Mosca, Joop van de Pol

t.m.m.laarhoven@tue.nl
http://www.thijs.com/

PQCrypto 2013, Limoges, France
(June 6, 2013)

t.m.m.laarhoven@tue.nl
http://www.thijs.com/


Outline

Introduction
Lattices
Quantum Search

Applications

SVP Algorithms
Sieving
Saturation
Enumeration

Overview

Conclusion



Lattices
What is a lattice?



Lattices
What is a lattice?



Lattices
What is a lattice?



Lattices
Lattice Basis Reduction



Lattices
Shortest Vector Problem (SVP)



Lattices
Shortest Vector Problem (SVP)



Lattices
Closest Vector Problem (CVP)



Lattices
Closest Vector Problem (CVP)



Quantum Search
Classical form

Problem: Given a list L of size N, and a function f : L→ {0, 1}
such that there is exactly one e ∈ L with f (e) = 1. Find e.

• Classical search: Θ(N) time
• Quantum search: Θ(

√
N) time [Gro96]



Quantum Search
Classical form

Problem: Given a list L of size N, and a function f : L→ {0, 1}
such that there is exactly one e ∈ L with f (e) = 1. Find e.

• Classical search: Θ(N) time

• Quantum search: Θ(
√

N) time [Gro96]



Quantum Search
Classical form

Problem: Given a list L of size N, and a function f : L→ {0, 1}
such that there is exactly one e ∈ L with f (e) = 1. Find e.

• Classical search: Θ(N) time
• Quantum search: Θ(

√
N) time [Gro96]



Quantum Search
General form

Problem: Given a list L of size N, and a function f : L→ {0, 1}
such that there are c = O(1) elements e ∈ L with f (e) = 1. Find
one such e.

• Classical search: Θ(N/c) time
• Quantum search: Θ(

√
N/c) time [Gro96]



Quantum Search
General form

Problem: Given a list L of size N, and a function f : L→ {0, 1}
such that there are c = O(1) elements e ∈ L with f (e) = 1. Find
one such e.

• Classical search: Θ(N/c) time

• Quantum search: Θ(
√

N/c) time [Gro96]



Quantum Search
General form

Problem: Given a list L of size N, and a function f : L→ {0, 1}
such that there are c = O(1) elements e ∈ L with f (e) = 1. Find
one such e.

• Classical search: Θ(N/c) time
• Quantum search: Θ(

√
N/c) time [Gro96]



Applications
(Why do we care?)

• “Constructive cryptography”: Lattice-based cryptosystems
I Based on hard lattice problems (SVP, CVP)
I NTRU cryptosystem [HPS98]
I Fully Homomorphic Encryption [Gen09]
I Candidate for “Post-Quantum” cryptography

• “Destructive cryptography”: Cryptanalysis

I Attack knapsack-based cryptosystems [Sha82, LO85]
I Attack variants of RSA [Cop96]
I Attack DSA and ECDSA [NS02, NS03]
I Attack lattice-based cryptosystems [Ngu99, JJ00]

How (quantum-)hard are hard lattice problems such as SVP?



Applications
(Why do we care?)

• “Constructive cryptography”: Lattice-based cryptosystems
I Based on hard lattice problems (SVP, CVP)
I NTRU cryptosystem [HPS98]
I Fully Homomorphic Encryption [Gen09]
I Candidate for “Post-Quantum” cryptography

• “Destructive cryptography”: Cryptanalysis
I Attack knapsack-based cryptosystems [Sha82, LO85]
I Attack variants of RSA [Cop96]
I Attack DSA and ECDSA [NS02, NS03]
I Attack lattice-based cryptosystems [Ngu99, JJ00]

How (quantum-)hard are hard lattice problems such as SVP?



Applications
(Why do we care?)

• “Constructive cryptography”: Lattice-based cryptosystems
I Based on hard lattice problems (SVP, CVP)
I NTRU cryptosystem [HPS98]
I Fully Homomorphic Encryption [Gen09]
I Candidate for “Post-Quantum” cryptography

• “Destructive cryptography”: Cryptanalysis
I Attack knapsack-based cryptosystems [Sha82, LO85]
I Attack variants of RSA [Cop96]
I Attack DSA and ECDSA [NS02, NS03]
I Attack lattice-based cryptosystems [Ngu99, JJ00]

How (quantum-)hard are hard lattice problems such as SVP?



Sieving

Invented in 2001 [AKS01]
Procedure:
1. Generate a long list V of random lattice vectors

2. Split V into two sets C (centers, cover) and R (rest):

I Set C = ∅ and R = ∅
I For each v ∈ V , find the closest c ∈ C

I If ‖v − c‖ is “large”, add v to C
I If ‖v − c‖ is “small”, add v − c to R

3. Set V = R and repeat until V contains a shortest vector



Sieving

Invented in 2001 [AKS01]
Procedure:
1. Generate a long list V of random lattice vectors
2. Split V into two sets C (centers, cover) and R (rest):

I Set C = ∅ and R = ∅
I For each v ∈ V , find the closest c ∈ C

I If ‖v − c‖ is “large”, add v to C
I If ‖v − c‖ is “small”, add v − c to R

3. Set V = R and repeat until V contains a shortest vector



Sieving

Invented in 2001 [AKS01]
Procedure:
1. Generate a long list V of random lattice vectors
2. Split V into two sets C (centers, cover) and R (rest):

I Set C = ∅ and R = ∅

I For each v ∈ V , find the closest c ∈ C

I If ‖v − c‖ is “large”, add v to C
I If ‖v − c‖ is “small”, add v − c to R

3. Set V = R and repeat until V contains a shortest vector



Sieving

Invented in 2001 [AKS01]
Procedure:
1. Generate a long list V of random lattice vectors
2. Split V into two sets C (centers, cover) and R (rest):

I Set C = ∅ and R = ∅
I For each v ∈ V , find the closest c ∈ C

I If ‖v − c‖ is “large”, add v to C
I If ‖v − c‖ is “small”, add v − c to R

3. Set V = R and repeat until V contains a shortest vector



Sieving

Invented in 2001 [AKS01]
Procedure:
1. Generate a long list V of random lattice vectors
2. Split V into two sets C (centers, cover) and R (rest):

I Set C = ∅ and R = ∅
I For each v ∈ V , find the closest c ∈ C

I If ‖v − c‖ is “large”, add v to C
I If ‖v − c‖ is “small”, add v − c to R

3. Set V = R and repeat until V contains a shortest vector



Sieving
1. Generate random lattice vectors



Sieving
1. Generate random lattice vectors



Sieving
2. Split into C and R



Sieving
2. Split into C and R



Sieving
2. Split into C and R



Sieving
2. Split into C and R



Sieving
2. Split into C and R



Sieving
2. Split into C and R



Sieving
2. Split into C and R



Sieving
2. Split into C and R



Sieving
2. Split into C and R



Sieving
2. Split into C and R



Sieving
2. Split into C and R



Sieving
2. Split into C and R



Sieving
2. Split into C and R



Sieving
2. Split into C and R



Sieving
2. Split into C and R



Sieving
2. Split into C and R



Sieving
3. Repeat until V contains a shortest vector



Sieving
3. Repeat until V contains a shortest vector



Sieving
3. Repeat until V contains a shortest vector



Sieving
3. Repeat until V contains a shortest vector



Sieving
Invented in 2001 [AKS01]
Procedure:
1. Generate a long list V of random lattice vectors
2. Split V into two sets C (centers, cover) and R (rest):

I Set C = ∅ and R = ∅
I For each v ∈ V , find the closest c ∈ C

I If ‖v − c‖ is “large”, add v to C
I If ‖v − c‖ is “small”, add v − c to R

3. Set V = R and repeat until V contains a shortest vector

Complexity?
• Space: |V |, |C |, |R| ≤ 2αn for some α

≈ 0.21

• Classical Time:

≈ 2αn · 2αn = 22αn

≈ 20.42n+o(n) [NV08]

• Quantum Time:

≈ 2αn ·
√
2αn = 2 3

2αn

≈ 20.31n+o(n) [LMP13]

• Improvement: 25% in the exponent



Sieving
Invented in 2001 [AKS01]
Procedure:
1. Generate a long list V of random lattice vectors
2. Split V into two sets C (centers, cover) and R (rest):

I Set C = ∅ and R = ∅
I For each v ∈ V , find the closest c ∈ C

I If ‖v − c‖ is “large”, add v to C
I If ‖v − c‖ is “small”, add v − c to R

3. Set V = R and repeat until V contains a shortest vector
Complexity?

• Space: |V |, |C |, |R| ≤ 2αn for some α

≈ 0.21

• Classical Time:

≈ 2αn · 2αn = 22αn

≈ 20.42n+o(n) [NV08]

• Quantum Time:

≈ 2αn ·
√
2αn = 2 3

2αn

≈ 20.31n+o(n) [LMP13]

• Improvement: 25% in the exponent



Sieving
Invented in 2001 [AKS01]
Procedure:
1. Generate a long list V of random lattice vectors
2. Split V into two sets C (centers, cover) and R (rest):

I Set C = ∅ and R = ∅
I For each v ∈ V , find the closest c ∈ C

I If ‖v − c‖ is “large”, add v to C
I If ‖v − c‖ is “small”, add v − c to R

3. Set V = R and repeat until V contains a shortest vector
Complexity?

• Space: |V |, |C |, |R| ≤ 2αn for some α

≈ 0.21
• Classical Time:

≈ 2αn · 2αn = 22αn

≈ 20.42n+o(n) [NV08]

• Quantum Time:

≈ 2αn ·
√
2αn = 2 3

2αn

≈ 20.31n+o(n) [LMP13]

• Improvement: 25% in the exponent



Sieving
Invented in 2001 [AKS01]
Procedure:
1. Generate a long list V of random lattice vectors
2. Split V into two sets C (centers, cover) and R (rest):

I Set C = ∅ and R = ∅
I For each v ∈ V , find the closest c ∈ C

I If ‖v − c‖ is “large”, add v to C
I If ‖v − c‖ is “small”, add v − c to R

3. Set V = R and repeat until V contains a shortest vector
Complexity?

• Space: |V |, |C |, |R| ≤ 2αn for some α

≈ 0.21

• Classical Time:

≈ 2αn · 2αn = 22αn

≈ 20.42n+o(n) [NV08]

• Quantum Time:

≈ 2αn ·
√
2αn = 2 3

2αn

≈ 20.31n+o(n) [LMP13]

• Improvement: 25% in the exponent



Sieving
Invented in 2001 [AKS01]
Procedure:
1. Generate a long list V of random lattice vectors
2. Split V into two sets C (centers, cover) and R (rest):

I Set C = ∅ and R = ∅
I For each v ∈ V , find the closest c ∈ C

I If ‖v − c‖ is “large”, add v to C
I If ‖v − c‖ is “small”, add v − c to R

3. Set V = R and repeat until V contains a shortest vector
Complexity?

• Space: |V |, |C |, |R| ≤ 2αn for some α

≈ 0.21

• Classical Time: ≈ 2αn · 2αn = 22αn

≈ 20.42n+o(n) [NV08]

• Quantum Time:

≈ 2αn ·
√
2αn = 2 3

2αn

≈ 20.31n+o(n) [LMP13]

• Improvement: 25% in the exponent



Sieving
Invented in 2001 [AKS01]
Procedure:
1. Generate a long list V of random lattice vectors
2. Split V into two sets C (centers, cover) and R (rest):

I Set C = ∅ and R = ∅
I For each v ∈ V , find the closest c ∈ C

I If ‖v − c‖ is “large”, add v to C
I If ‖v − c‖ is “small”, add v − c to R

3. Set V = R and repeat until V contains a shortest vector
Complexity?

• Space: |V |, |C |, |R| ≤ 2αn for some α

≈ 0.21

• Classical Time: ≈ 2αn · 2αn = 22αn

≈ 20.42n+o(n) [NV08]

• Quantum Time: ≈ 2αn ·
√
2αn = 2 3

2αn

≈ 20.31n+o(n) [LMP13]
• Improvement: 25% in the exponent



Sieving
Invented in 2001 [AKS01]
Procedure:
1. Generate a long list V of random lattice vectors
2. Split V into two sets C (centers, cover) and R (rest):

I Set C = ∅ and R = ∅
I For each v ∈ V , find the closest c ∈ C

I If ‖v − c‖ is “large”, add v to C
I If ‖v − c‖ is “small”, add v − c to R

3. Set V = R and repeat until V contains a shortest vector
Complexity?

• Space: |V |, |C |, |R| ≤ 2αn for some α

≈ 0.21

• Classical Time: ≈ 2αn · 2αn = 22αn

≈ 20.42n+o(n) [NV08]

• Quantum Time: ≈ 2αn ·
√
2αn = 2 3

2αn

≈ 20.31n+o(n) [LMP13]

• Improvement: 25% in the exponent



Sieving
Invented in 2001 [AKS01]
Procedure:
1. Generate a long list V of random lattice vectors
2. Split V into two sets C (centers, cover) and R (rest):

I Set C = ∅ and R = ∅
I For each v ∈ V , find the closest c ∈ C

I If ‖v − c‖ is “large”, add v to C
I If ‖v − c‖ is “small”, add v − c to R

3. Set V = R and repeat until V contains a shortest vector
Complexity?

• Space: |V |, |C |, |R| ≤ 2αn for some α ≈ 0.21
• Classical Time: ≈ 2αn · 2αn = 22αn ≈ 20.42n+o(n) [NV08]
• Quantum Time: ≈ 2αn ·

√
2αn = 2 3

2αn ≈ 20.31n+o(n) [LMP13]
• Improvement: 25% in the exponent



Saturation

Invented in 2009 [MV09]
Procedure:
1. Generate a long list V of random lattice vectors

2. “Reduce the vectors with each other”:

I Set C = ∅
I For each v ∈ V , find the closest vector c ∈ C

I If ‖v − c‖ < ‖v‖, set v ← v − c and find new closest c ∈ C
I If ‖v − c‖ ≥ ‖v‖, add v to C

3. Search C for a shortest vector



Saturation

Invented in 2009 [MV09]
Procedure:
1. Generate a long list V of random lattice vectors
2. “Reduce the vectors with each other”:

I Set C = ∅
I For each v ∈ V , find the closest vector c ∈ C

I If ‖v − c‖ < ‖v‖, set v ← v − c and find new closest c ∈ C
I If ‖v − c‖ ≥ ‖v‖, add v to C

3. Search C for a shortest vector



Saturation

Invented in 2009 [MV09]
Procedure:
1. Generate a long list V of random lattice vectors
2. “Reduce the vectors with each other”:

I Set C = ∅

I For each v ∈ V , find the closest vector c ∈ C

I If ‖v − c‖ < ‖v‖, set v ← v − c and find new closest c ∈ C
I If ‖v − c‖ ≥ ‖v‖, add v to C

3. Search C for a shortest vector



Saturation

Invented in 2009 [MV09]
Procedure:
1. Generate a long list V of random lattice vectors
2. “Reduce the vectors with each other”:

I Set C = ∅
I For each v ∈ V , find the closest vector c ∈ C

I If ‖v − c‖ < ‖v‖, set v ← v − c and find new closest c ∈ C
I If ‖v − c‖ ≥ ‖v‖, add v to C

3. Search C for a shortest vector



Saturation

Invented in 2009 [MV09]
Procedure:
1. Generate a long list V of random lattice vectors
2. “Reduce the vectors with each other”:

I Set C = ∅
I For each v ∈ V , find the closest vector c ∈ C

I If ‖v − c‖ < ‖v‖, set v ← v − c and find new closest c ∈ C
I If ‖v − c‖ ≥ ‖v‖, add v to C

3. Search C for a shortest vector



Saturation
1. Generate random lattice vectors



Saturation
1. Generate random lattice vectors



Saturation
2. Reduce the vectors with each other



Saturation
2. Reduce the vectors with each other



Saturation
2. Reduce the vectors with each other



Saturation
2. Reduce the vectors with each other



Saturation
2. Reduce the vectors with each other



Saturation
2. Reduce the vectors with each other



Saturation
2. Reduce the vectors with each other



Saturation
2. Reduce the vectors with each other



Saturation
2. Reduce the vectors with each other



Saturation
2. Reduce the vectors with each other



Saturation
2. Reduce the vectors with each other



Saturation
2. Reduce the vectors with each other



Saturation
2. Reduce the vectors with each other



Saturation
2. Reduce the vectors with each other



Saturation
2. Reduce the vectors with each other



Saturation
2. Reduce the vectors with each other



Saturation
3. Search C for a shortest vector



Saturation
3. Search C for a shortest vector



Saturation
Invented in 2009 [MV09]
Procedure:
1. Generate a long list V of random lattice vectors
2. “Reduce the vectors with each other”:

I Set C = ∅
I For each v ∈ V , find the closest vector c ∈ C

I If ‖v − c‖ < ‖v‖, set v ← v − c and find new closest c ∈ C
I If ‖v − c‖ ≥ ‖v‖, add v to C

3. Find a shortest vector among the reduced vectors

Complexity?
• Space: |V |, |C |, |R| ≤ 2αn for some α

≈ 0.21

• Classical Time:

≈ 2αn · 2αn = 22αn

≈ 20.52n+o(n) [MV09]

• Quantum Time:

≈ 2αn ·
√
2αn = 2 3

2αn

≈ 20.39n+o(n) [LMP13]

• Improvement: ≈ 25% in the exponent



Saturation
Invented in 2009 [MV09]
Procedure:
1. Generate a long list V of random lattice vectors
2. “Reduce the vectors with each other”:

I Set C = ∅
I For each v ∈ V , find the closest vector c ∈ C

I If ‖v − c‖ < ‖v‖, set v ← v − c and find new closest c ∈ C
I If ‖v − c‖ ≥ ‖v‖, add v to C

3. Find a shortest vector among the reduced vectors
Complexity?

• Space: |V |, |C |, |R| ≤ 2αn for some α

≈ 0.21

• Classical Time:

≈ 2αn · 2αn = 22αn

≈ 20.52n+o(n) [MV09]

• Quantum Time:

≈ 2αn ·
√
2αn = 2 3

2αn

≈ 20.39n+o(n) [LMP13]

• Improvement: ≈ 25% in the exponent



Saturation
Invented in 2009 [MV09]
Procedure:
1. Generate a long list V of random lattice vectors
2. “Reduce the vectors with each other”:

I Set C = ∅
I For each v ∈ V , find the closest vector c ∈ C

I If ‖v − c‖ < ‖v‖, set v ← v − c and find new closest c ∈ C
I If ‖v − c‖ ≥ ‖v‖, add v to C

3. Find a shortest vector among the reduced vectors
Complexity?

• Space: |V |, |C |, |R| ≤ 2αn for some α

≈ 0.21
• Classical Time:

≈ 2αn · 2αn = 22αn

≈ 20.52n+o(n) [MV09]

• Quantum Time:

≈ 2αn ·
√
2αn = 2 3

2αn

≈ 20.39n+o(n) [LMP13]

• Improvement: ≈ 25% in the exponent



Saturation
Invented in 2009 [MV09]
Procedure:
1. Generate a long list V of random lattice vectors
2. “Reduce the vectors with each other”:

I Set C = ∅
I For each v ∈ V , find the closest vector c ∈ C

I If ‖v − c‖ < ‖v‖, set v ← v − c and find new closest c ∈ C
I If ‖v − c‖ ≥ ‖v‖, add v to C

3. Find a shortest vector among the reduced vectors
Complexity?

• Space: |V |, |C |, |R| ≤ 2αn for some α

≈ 0.21

• Classical Time:

≈ 2αn · 2αn = 22αn

≈ 20.52n+o(n) [MV09]

• Quantum Time:

≈ 2αn ·
√
2αn = 2 3

2αn

≈ 20.39n+o(n) [LMP13]

• Improvement: ≈ 25% in the exponent



Saturation
Invented in 2009 [MV09]
Procedure:
1. Generate a long list V of random lattice vectors
2. “Reduce the vectors with each other”:

I Set C = ∅
I For each v ∈ V , find the closest vector c ∈ C

I If ‖v − c‖ < ‖v‖, set v ← v − c and find new closest c ∈ C
I If ‖v − c‖ ≥ ‖v‖, add v to C

3. Find a shortest vector among the reduced vectors
Complexity?

• Space: |V |, |C |, |R| ≤ 2αn for some α

≈ 0.21

• Classical Time: ≈ 2αn · 2αn = 22αn

≈ 20.52n+o(n) [MV09]

• Quantum Time:

≈ 2αn ·
√
2αn = 2 3

2αn

≈ 20.39n+o(n) [LMP13]

• Improvement: ≈ 25% in the exponent



Saturation
Invented in 2009 [MV09]
Procedure:
1. Generate a long list V of random lattice vectors
2. “Reduce the vectors with each other”:

I Set C = ∅
I For each v ∈ V , find the closest vector c ∈ C

I If ‖v − c‖ < ‖v‖, set v ← v − c and find new closest c ∈ C
I If ‖v − c‖ ≥ ‖v‖, add v to C

3. Find a shortest vector among the reduced vectors
Complexity?

• Space: |V |, |C |, |R| ≤ 2αn for some α

≈ 0.21

• Classical Time: ≈ 2αn · 2αn = 22αn

≈ 20.52n+o(n) [MV09]

• Quantum Time: ≈ 2αn ·
√
2αn = 2 3

2αn

≈ 20.39n+o(n) [LMP13]
• Improvement: ≈ 25% in the exponent



Saturation
Invented in 2009 [MV09]
Procedure:
1. Generate a long list V of random lattice vectors
2. “Reduce the vectors with each other”:

I Set C = ∅
I For each v ∈ V , find the closest vector c ∈ C

I If ‖v − c‖ < ‖v‖, set v ← v − c and find new closest c ∈ C
I If ‖v − c‖ ≥ ‖v‖, add v to C

3. Find a shortest vector among the reduced vectors
Complexity?

• Space: |V |, |C |, |R| ≤ 2αn for some α

≈ 0.21

• Classical Time: ≈ 2αn · 2αn = 22αn

≈ 20.52n+o(n) [MV09]

• Quantum Time: ≈ 2αn ·
√
2αn = 2 3

2αn

≈ 20.39n+o(n) [LMP13]

• Improvement: ≈ 25% in the exponent



Saturation
Invented in 2009 [MV09]
Procedure:
1. Generate a long list V of random lattice vectors
2. “Reduce the vectors with each other”:

I Set C = ∅
I For each v ∈ V , find the closest vector c ∈ C

I If ‖v − c‖ < ‖v‖, set v ← v − c and find new closest c ∈ C
I If ‖v − c‖ ≥ ‖v‖, add v to C

3. Find a shortest vector among the reduced vectors
Complexity?

• Space: |V |, |C |, |R| ≤ 2αn for some α ≈ 0.21
• Classical Time: ≈ 2αn · 2αn = 22αn ≈ 20.52n+o(n) [MV09]
• Quantum Time: ≈ 2αn ·

√
2αn = 2 3

2αn ≈ 20.39n+o(n) [LMP13]
• Improvement: ≈ 25% in the exponent



Enumeration

Invented in the early ’80s [Poh81, Kan83, FP85]
Procedure:
1. “Guess” the nth coordinate (coefficient of basis vector bn)

2. Find a shortest vector, given the nth coordinate
3. Search for a shortest vector among all of these vectors

Recursive: Reduces SVPn (CVPn) to several instances of CVPn−1



Enumeration

Invented in the early ’80s [Poh81, Kan83, FP85]
Procedure:
1. “Guess” the nth coordinate (coefficient of basis vector bn)
2. Find a shortest vector, given the nth coordinate

3. Search for a shortest vector among all of these vectors
Recursive: Reduces SVPn (CVPn) to several instances of CVPn−1



Enumeration

Invented in the early ’80s [Poh81, Kan83, FP85]
Procedure:
1. “Guess” the nth coordinate (coefficient of basis vector bn)
2. Find a shortest vector, given the nth coordinate
3. Search for a shortest vector among all of these vectors

Recursive: Reduces SVPn (CVPn) to several instances of CVPn−1



Enumeration

Invented in the early ’80s [Poh81, Kan83, FP85]
Procedure:
1. “Guess” the nth coordinate (coefficient of basis vector bn)
2. Find a shortest vector, given the nth coordinate
3. Search for a shortest vector among all of these vectors

Recursive: Reduces SVPn (CVPn) to several instances of CVPn−1



Enumeration
Possible coefficients of b2



Enumeration
Possible coefficients of b2



Enumeration
Possible coefficients of b2



Enumeration
Possible coefficients of b2



Enumeration
Possible coefficients of b2



Enumeration
1-2. Guess the coefficient of b2 and solve CVP1



Enumeration
1-2. Guess the coefficient of b2 and solve CVP1



Enumeration
1-2. Guess the coefficient of b2 and solve CVP1



Enumeration
1-2. Guess the coefficient of b2 and solve CVP1



Enumeration
1-2. Guess the coefficient of b2 and solve CVP1



Enumeration
1-2. Guess the coefficient of b2 and solve CVP1



Enumeration
1-2. Guess the coefficient of b2 and solve CVP1



Enumeration
1-2. Guess the coefficient of b2 and solve CVP1



Enumeration
1-2. Guess the coefficient of b2 and solve CVP1



Enumeration
1-2. Guess the coefficient of b2 and solve CVP1



Enumeration
1-2. Guess the coefficient of b2 and solve CVP1



Enumeration
1-2. Guess the coefficient of b2 and solve CVP1



Enumeration
1-2. Guess the coefficient of b2 and solve CVP1



Enumeration
1-2. Guess the coefficient of b2 and solve CVP1



Enumeration
1-2. Guess the coefficient of b2 and solve CVP1



Enumeration
3. Find a shortest vector among all of them



Enumeration
3. Find a shortest vector among all of them



Enumeration

Invented in the early ’80s [Poh81, Kan83, FP85]
Procedure:
1. Guess the nth coordinate (coefficient of basis vector bn)
2. Find a shortest vector, given the nth coordinate
3. Search for a shortest vector among all of these vectors

Recursive: Reduces SVPn (CVPn) to several instances of CVPn−1

Complexity?
• Space: (polynomial)
• Classical Time: 2O(n log n) [Kan83]
• Quantum Time: 2O(n log n)?



Enumeration

Invented in the early ’80s [Poh81, Kan83, FP85]
Procedure:
1. Guess the nth coordinate (coefficient of basis vector bn)
2. Find a shortest vector, given the nth coordinate
3. Search for a shortest vector among all of these vectors

Recursive: Reduces SVPn (CVPn) to several instances of CVPn−1
Complexity?

• Space: (polynomial)
• Classical Time: 2O(n log n) [Kan83]
• Quantum Time: 2O(n log n)?



Enumeration

Invented in the early ’80s [Poh81, Kan83, FP85]
Procedure:
1. Guess the nth coordinate (coefficient of basis vector bn)
2. Find a shortest vector, given the nth coordinate
3. Search for a shortest vector among all of these vectors

Recursive: Reduces SVPn (CVPn) to several instances of CVPn−1
Complexity?

• Space: (polynomial)

• Classical Time: 2O(n log n) [Kan83]
• Quantum Time: 2O(n log n)?



Enumeration

Invented in the early ’80s [Poh81, Kan83, FP85]
Procedure:
1. Guess the nth coordinate (coefficient of basis vector bn)
2. Find a shortest vector, given the nth coordinate
3. Search for a shortest vector among all of these vectors

Recursive: Reduces SVPn (CVPn) to several instances of CVPn−1
Complexity?

• Space: (polynomial)
• Classical Time: 2O(n log n) [Kan83]

• Quantum Time: 2O(n log n)?



Enumeration

Invented in the early ’80s [Poh81, Kan83, FP85]
Procedure:
1. Guess the nth coordinate (coefficient of basis vector bn)
2. Find a shortest vector, given the nth coordinate
3. Search for a shortest vector among all of these vectors

Recursive: Reduces SVPn (CVPn) to several instances of CVPn−1
Complexity?

• Space: (polynomial)
• Classical Time: 2O(n log n) [Kan83]
• Quantum Time: 2O(n log n)?



Overview
Theoretical results (large n)

Table: Complexities of SVP algorithms in logarithmic leading order
terms, ordered by their time complexities (descending).

Classical Quantum
Algorithm Time Space Time Space

Enum. [Kan83] O(n log n) O(log n) O(n log n) O(log n)
Sieving [PS09] 2.65n 1.33n 2.65n 1.33n
Saturation [PS09] 2.47n 1.24n 2.47n 1.24n
Voronoi cell [MV10] 2.00n 1.00n 2.00n 1.00n



Overview
Theoretical results (large n)

Table: Complexities of SVP algorithms in logarithmic leading order
terms, ordered by their time complexities (descending).

Classical Quantum
Algorithm Time Space Time Space

Enum. [Kan83] O(n log n) O(log n) O(n log n) O(log n)
Sieving [PS09] 2.65n 1.33n 2.65n 1.33n
Saturation [LMP13] 2.47n 1.24n 1.80n 1.29n
Voronoi cell [MV10] 2.00n 1.00n 2.00n 1.00n



Overview
Theoretical results (large n)

Table: Complexities of SVP algorithms in logarithmic leading order
terms, ordered by their time complexities (descending).

Classical Quantum
Algorithm Time Space Time Space

Enum. [Kan83] O(n log n) O(log n) O(n log n) O(log n)
Sieving [PS09] 2.65n 1.33n 2.65n 1.33n
Voronoi cell [MV10] 2.00n 1.00n 2.00n 1.00n
Saturation [LMP13] 2.47n 1.24n 1.80n 1.29n



Overview
Heuristic/Experimental results (n ≈ 100)

Table: Complexities of SVP algorithms in logarithmic leading order
terms, ordered by their time complexities (descending).

Classical Quantum
Algorithm Time Space Time Space

Voronoi cell [MV10] 2.00n 1.00n 2.00n 1.00n
Sieving [NV08] 0.42n 0.21n 0.42n 0.21n
Saturation [MV09] 0.52n 0.21n 0.52n 0.21n
Enum. [GNR10] O(n log n) O(log n) O(n log n) O(log n)



Overview
Heuristic/Experimental results (n ≈ 100)

Table: Complexities of SVP algorithms in logarithmic leading order
terms, ordered by their time complexities (descending).

Classical Quantum
Algorithm Time Space Time Space

Voronoi cell [MV10] 2.00n 1.00n 2.00n 1.00n
Sieving [LMP13] 0.42n 0.21n 0.32n 0.21n
Saturation [LMP13] 0.52n 0.21n 0.39n 0.21n
Enum. [GNR10] O(n log n) O(log n) O(n log n) O(log n)



Conclusion

Results
• Faster sieving algorithms (exponent: −25%)
• Faster saturation algorithms (exponent: ≈ −25%)

Open problems
• Improve enumeration algorithms?
• Improve Voronoi cell algorithm?
• Use other quantum algorithms?
• Build a quantum computer?



Questions


	Introduction
	Lattices
	Quantum Search

	Applications
	SVP Algorithms
	Sieving
	Saturation
	Enumeration

	Overview
	Conclusion



