Technische Universiteit
Eindhoven
University of Technology

Quantum Cryptanalysis of
Post-Quantum Cryptography

Thijs Laarhoven, Michele Mosca, Joop van de Pol

t.m.m.laarhoven@tue.nl
http://www.thijs.com/

PQCrypto 2013, Limoges, France
(June 6, 2013)

t.m.m.laarhoven@tue.nl
http://www.thijs.com/

Technische Universiteit
Eindhoven
University of Technology

Solving the Shortest Vector Problem in
Lattices Faster Using Quantum Search

Thijs Laarhoven, Michele Mosca, Joop van de Pol

t.m.m.laarhoven@tue.nl
http://www.thijs.com/

PQCrypto 2013, Limoges, France
(June 6, 2013)

t.m.m.laarhoven@tue.nl
http://www.thijs.com/

TU/e

Introduction
Lattices
Quantum Search

Applications

SVP Algorithms
Sieving
Saturation
Enumeration

Overview

Conclusion

Outline

TU
/e Lattices

What is a lattice?

Qe

TU/e

Lattices
What is a lattice?

. TU, .
e Lattices,

What is a lattice?

. TU/e .
Lattices,

Lattice Basis Reduction

. TU/e .
Lattices,

Shortest Vector.Problem (SVP)

. TU/e .
Lattices,

Shortest Vector.Problem (SVP)

. TU/e .
Lattices,

Closest Vector Problem (CVP)

. TU/e .
Lattices,

Closest Vector Problem (CVP)

TU
/e Quantum Search

Classical form

Problem: Given a list L of size N, and a function f : L — {0,1}
such that there is exactly one e € L with f(e) = 1. Find e.

TU
/e Quantum Search

Classical form

Problem: Given a list L of size N, and a function f : L — {0,1}
such that there is exactly one e € L with f(e) = 1. Find e.

o Classical search: ©(N) time

TU
/e Quantum Search

Classical form

Problem: Given a list L of size N, and a function f : L — {0,1}
such that there is exactly one e € L with f(e) = 1. Find e.

o Classical search: ©(N) time
¢ Quantum search: ©(v/N) time [Gro96]

TU
/e Quantum Search

General form

Problem: Given a list L of size N, and a function f : L — {0,1}
such that there are ¢ = O(1) elements e € L with f(e) = 1. Find
one such e.

TU
/e Quantum Search

General form

Problem: Given a list L of size N, and a function f : L — {0,1}
such that there are ¢ = O(1) elements e € L with f(e) = 1. Find
one such e.

o Classical search: ©(N/c) time

TU
/e Quantum Search

General form

Problem: Given a list L of size N, and a function f : L — {0,1}
such that there are ¢ = O(1) elements e € L with f(e) = 1. Find
one such e.

o Classical search: ©(N/c) time

e Quantum search: ©(y/N/c) time [Gro96]

TU/e L
Applications

(Why do we care?)

e “Constructive cryptography”: Lattice-based cryptosystems
» Based on hard lattice problems (SVP, CVP)

NTRU cryptosystem [HPS98]

Fully Homomorphic Encryption [Gen09]

Candidate for “Post-Quantum” cryptography

v VvYyy

TU
fe Applications

(Why do we care?)

e “Constructive cryptography”: Lattice-based cryptosystems
» Based on hard lattice problems (SVP, CVP)

NTRU cryptosystem [HPS98]

Fully Homomorphic Encryption [Gen09]

Candidate for “Post-Quantum” cryptography

v VvYyy

e “Destructive cryptography”: Cryptanalysis

Attack knapsack-based cryptosystems [Sha82, LO85]
Attack variants of RSA [Cop96]

Attack DSA and ECDSA [NS02, NS03]

Attack lattice-based cryptosystems [Ngu99, JJ0O]

v

v VvYyy

TU
fe Applications

(Why do we care?)

e “Constructive cryptography”: Lattice-based cryptosystems
» Based on hard lattice problems (SVP, CVP)

NTRU cryptosystem [HPS98]

Fully Homomorphic Encryption [Gen09]

Candidate for "Post-Quantum” cryptography

v VvYyy

e “Destructive cryptography”: Cryptanalysis

Attack knapsack-based cryptosystems [Sha82, LO85]
Attack variants of RSA [Cop96]

Attack DSA and ECDSA [NS02, NS03]

Attack lattice-based cryptosystems [Ngu99, JJ0O]

v

v VvYyy

How (quantum-)hard are hard lattice problems such as SVP?

TU
fe Sieving

Invented in 2001 [AKSO1]
Procedure:

1. Generate a long list V of random lattice vectors

TU
fe Sieving

Invented in 2001 [AKSO1]
Procedure:

1. Generate a long list V of random lattice vectors
2. Split V into two sets C (centers, cover) and R (rest):

TU
fe Sieving

Invented in 2001 [AKSO1]
Procedure:
1. Generate a long list V of random lattice vectors

2. Split V into two sets C (centers, cover) and R (rest):
» Set C=0and R=1

TU
fe Sieving

Invented in 2001 [AKSO1]
Procedure:

1. Generate a long list V of random lattice vectors
2. Split V into two sets C (centers, cover) and R (rest):
»Set C=0and R=10
» For each v € V, find the closest ¢ € C
> If |[v —c]|| is “large”, add v to C
> If |[v —c]| is “small”, add v — c to R

TU
fe Sieving

Invented in 2001 [AKSO1]
Procedure:

1. Generate a long list V of random lattice vectors
2. Split V into two sets C (centers, cover) and R (rest):

» Set C=0and R=10

» For each v € V, find the closest ¢ € C
> If |[v —c]|| is “large”, add v to C
> If |[v —c]| is “small”, add v — c to R

3. Set V = R and repeat until V contains a shortest vector

TU/e .

. . Sieving,
. . 1. Generate random lattice vectors
. Ld .
L] L] O L]

TU/e

[]
Vi2

‘Sieving,

@
Via

. Generate random lattice vectors .

TU/e

[]
Vi2

Sieving,
2. Split into C and R

Oe

[J
V14

TU/e . - .
Sieving,
. . 2. Split into C and R

° .)
Via

° [] .
. . V2 .
[] . .
° v 3 . .
. . []
s . O :
v.s . v; 0 . .
Y, ° .
. . . .9 .

. . Sieving,
. . 2. Split into C and R
° [] . []

. Via

°

O °
L] vg L] L

. [) .

. . Sieving,
. . 2. Split into C and R
° [] . []

. Via

°

O °
. Vo . .

. [) .

. . Sieving,
. . 2. Split into C and R
° [] . []

V14

3. Repeat until

[J
° V5 []
. V12
Va ‘
[]
Ve ‘ Vig
[)

ieving, °
containg a shortest vector Vs
[) °
V14 °
. V11
[]
V7

. 'Sieving,

°
. Repeat until V' contains a shortest vegtor Vg
. °
° . Via °
. V12 . . V11
. [] .
° V1 [)
L] L] V4 L]
Vg
L] . .
V.3 O V.7
Vg
[) VG) .
. v2 [) V5 .
°)
Vgo
Vg
[. .
Vy Vi3
. [y °

. 'Sieving,

°
. Repeat until V' contains a shortest vegtor Vg
. °
° . Via °
. V12 . . V11
. [] .
° V1 [)
L] L] V4 L]
Vg
L] . .
V.3 O V.7
Vg
[) VG) .
. v2 [) V5 .
°)
Vgo
Vg
[. .
Vy Vi3
. [y °

TU/e .
Sieving
Invented in 2001 [AKSO1]
Procedure:
1. Generate a long list V' of random lattice vectors

2. Split V into two sets C (centers, cover) and R (rest):

» Set C=0and R=1

» For each v € V, find the closest c € C
> If ||v — || is “large”, add v to C
> If ||[v—c]| is “small”, add v — c to R

3. Set V = R and repeat until V' contains a shortest vector

TU
fe Sieving

Invented in 2001 [AKSO1]
Procedure:
1. Generate a long list V' of random lattice vectors

2. Split V into two sets C (centers, cover) and R (rest):
» Set C=0and R=1
» For each v € V, find the closest c € C
> If ||v — || is “large”, add v to C
> If ||[v—c]| is “small”, add v — c to R

3. Set V = R and repeat until V' contains a shortest vector

Complexity?

TU
fe Sieving

Invented in 2001 [AKSO1]
Procedure:
1. Generate a long list V' of random lattice vectors

2. Split V into two sets C (centers, cover) and R (rest):
» Set C=0and R=1
» For each v € V, find the closest c € C
> If ||v — || is “large”, add v to C
> If ||[v—c]| is “small”, add v — c to R

3. Set V = R and repeat until V' contains a shortest vector
Complexity?
e Space: |V|],|C|,|R| < 2%" for some «

TU
fe Sieving

Invented in 2001 [AKSO1]

Procedure:

1. Generate a long list V' of random lattice vectors
2. Split V into two sets C (centers, cover) and R (rest):
» SetC=0and R=10
» For each v € V, find the closest c € C
> If ||v — || is “large”, add v to C
> If ||[v—c]| is “small”, add v — c to R

3. Set V = R and repeat until V' contains a shortest vector
Complexity?

e Space: |V|],|C|,|R| < 2%" for some «

e Classical Time:

e Quantum Time:

TU
fe Sieving

Invented in 2001 [AKSO1]

Procedure:

1. Generate a long list V' of random lattice vectors
2. Split V into two sets C (centers, cover) and R (rest):
» SetC=0and R=10
» For each v € V, find the closest c € C
> If ||v — || is “large”, add v to C
> If ||[v—c]| is “small”, add v — c to R

3. Set V = R and repeat until V' contains a shortest vector
Complexity?
e Space: |V|],|C|,|R| < 2%" for some «

e Classical Time: & 20n . pan — »2an

e Quantum Time:

TU
fe Sieving

Invented in 2001 [AKSO1]

Procedure:

1. Generate a long list V' of random lattice vectors
2. Split V into two sets C (centers, cover) and R (rest):
» SetC=0and R=10
» For each v € V, find the closest c € C
> If ||v — || is “large”, add v to C
> If ||[v—c]| is “small”, add v — c to R

3. Set V = R and repeat until V' contains a shortest vector
Complexity?

e Space: |V|],|C|,|R| < 2%" for some «

o Classical Time: ~ 207 .20n = 22an

e Quantum Time:; ~ 29" . /2an — p3an

TU
fe Sieving

Invented in 2001 [AKSO1]

Procedure:

1. Generate a long list V' of random lattice vectors
2. Split V into two sets C (centers, cover) and R (rest):
» SetC=0and R=10
» For each v € V, find the closest c € C
> If ||v — || is “large”, add v to C
> If ||[v—c]| is “small”, add v — c to R

3. Set V = R and repeat until V' contains a shortest vector
Complexity?
Space: |V|,|C|,|R| < 2" for some «
Classical Time: az 20" . 290 — p2an
Quantum Time: & 29" . /2an — p3an

e Improvement: 25% in the exponent

TU
fe Sieving

Invented in 2001 [AKSO1]

Procedure:

1. Generate a long list V' of random lattice vectors
2. Split V into two sets C (centers, cover) and R (rest):
» SetC=0and R=10
» For each v € V, find the closest c € C
> If ||v — || is “large”, add v to C
> If ||[v—c]| is “small”, add v — c to R

3. Set V = R and repeat until V' contains a shortest vector
Complexity?

e Space: |V|],|C|,|R]| < 2" for some o ~ 0.21

o Classical Time: a2 207 . 20" = 92an ~ 9042n+o(n) [NV(8]

o Quantum Time: & 297 . \/2an = 23N 4, 2031n+o(n) [LMP13]

e Improvement: 25% in the exponent

TU
/e Saturation

Invented in 2009 [MV09]
Procedure:

1. Generate a long list V of random lattice vectors

TU
/e Saturation

Invented in 2009 [MV09]
Procedure:

1. Generate a long list V of random lattice vectors
2. “Reduce the vectors with each other":

TU
/e Saturation

Invented in 2009 [MV09]
Procedure:
1. Generate a long list V of random lattice vectors

2. “Reduce the vectors with each other”:
» Set C=1(

TU
/e Saturation

Invented in 2009 [MV09]
Procedure:

1. Generate a long list V of random lattice vectors
2. “Reduce the vectors with each other”:

» Set C=1(

» For each v € V, find the closest vector c € C

> If |[v —¢|]| < ||lv]|, set v < v — ¢ and find new closest c € C
» If [[v—c|| >||v||, add v to C

TU
/e Saturation

Invented in 2009 [MV09]
Procedure:
1. Generate a long list V of random lattice vectors

2. "Reduce the vectors with each other":

» Set C=1()

» For each v € V/, find the closest vector c € C
> If |[v —¢|]| < ||lv]|, set v < v — ¢ and find new closest c € C
> If [[v—c|| >||v], add v to C

3. Search C for a shortest vector

TU, . .
e Saturation

. . 1. Generate randem lattice vectors
L] L] L]
. Ld .

L] L] O L]

TU/e

[]
Vi2

Satu ration

. Generate random lattice vectors .

@
Via

TU/e

Satu ration

. Reduce the vectors with each other

[]
V12

Qe

[J
Via

TU/e

Satu ration

. Reduce the vectors with each other

[]
V12

Oe

[J
Via

TU/e

. Saturation
. Reduce the vectors with each other

° []
° . Vi
Va2 . .

vgo L] L]
Vg
. [

[] v4 []

. Saturation
2. Reduce the vectors with each other

o [J
Via

[]
V12

Vgo L] L]

Vg

[. .
L] v4 L]

TU/e

. Reduce the vectors with each other

[]
V12

Saturation N
Vg
[]
. Via °
. . Vi
[] °
V3 .
Vo .
° 4 .
O °
Vg ‘
. [y

H
o5
w

Saturation N

educe the vectors with each other Vg
®
Vs . Via °
. V11
®
V3 ° Vo .
Vyu .
\"/
.2 ° O °
Vg 0 . X
Vg
[} L .
A7 Vi3
L . .

TU/e . . i
. . Saturation
. 2. Reduce the vectors with each other
° . [
. Vs ° . Via
. . V2 . .

[]
Va
Vg
° [} L .

TU/e

. Saturation
. Reduce the vectors with each other
. ®
° . Via
Vi2 . .
Vgo L] L]
Vg
.)
[] v4 []

Satu ration

. Reduce the vectors with ea ey

. V9
. []
. V4 .

TU/e

. Saturation
. Reduce the vectors with each other
. ®
° . Vi
V12 . .
Vio
)

TU/e

. Saturation
. Reduce the vectors with each other
. ®
° . Via
V12 . .
[] °
. V3 [)
. [] V2
Vio vy
V1 :
L] v9
.)
[] v4 []

. Saturation .
. Reduce the vectors with each other V8
.)
° Via
Vi2 Vi1

L] O L]
Vo ° . .
Vg
[] .
V4 Vi3
. [] []

TU/e

. Saturation
. Reduce the vectors with each other
. ®
. Via
V12 . .
3 °
o V2
Vy2 Vyu
L] O L]
Vgo L] L]
Vg
.)
[] v4 []

TU/e

. Saturation
. Reduce the vectors with each other
. ®
° . Vi
Vi2 . .
[] °
° V3 [)
. [] V2
Vi vy
Vgo ‘
Vg
.)
[] v4
L .

. Saturation
. Reduce the vectors with each other

vgo L] L]
Vg
. [

[] v4 []

TU/e

[]
V12

Saturation
. Reduce the vectors with each other

°
. Vi
°
V3 .
o V2
o V4
O .
Vg :

TU/e

[]
V12

Saturation
3. Search C for a shortest vector

[]
Vig

TU/e

[]
V12

Saturation
3. Search C for a shortest vector

[]
Vig

TU
/e Saturation

Invented in 2009 [MV09]
Procedure:
1. Generate a long list V' of random lattice vectors

2. "Reduce the vectors with each other":

» Set C=10

» For each v € V, find the closest vector c € C
> If |[v —c|| < ||v]|, set v < v — ¢ and find new closest c € C
» If |[v—c|| >|lv||, add v to C

3. Find a shortest vector among the reduced vectors

TU
/e Saturation

Invented in 2009 [MV09]
Procedure:
1. Generate a long list V' of random lattice vectors

2. "Reduce the vectors with each other":

» Set C=1(
» For each v € V, find the closest vector c € C

> If |[v —c|| < ||v]|, set v < v — ¢ and find new closest c € C
» If |[v—c|| >|lv||, add v to C

3. Find a shortest vector among the reduced vectors

Complexity?

TU
/e Saturation

Invented in 2009 [MV09]
Procedure:
1. Generate a long list V' of random lattice vectors

2. "Reduce the vectors with each other":

» Set C=1(
» For each v € V, find the closest vector c € C

> If |[v —c|| < ||v]|, set v < v — ¢ and find new closest c € C
» If |[v—c|| >|lv||, add v to C

3. Find a shortest vector among the reduced vectors
Complexity?
e Space: |V|],|C|,|R| < 2%" for some «

TU
/e Saturation

Invented in 2009 [MV09]
Procedure:

1. Generate a long list V' of random lattice vectors
2. “Reduce the vectors with each other":

» Set C=1(
» For each v € V, find the closest vector c € C

> If |[v —c|| < ||v]|, set v < v — ¢ and find new closest c € C
» If |[v—c|| >|lv||, add v to C

3. Find a shortest vector among the reduced vectors
Complexity?

e Space: |V|],|C|,|R| < 2%" for some «

e Classical Time:

e Quantum Time:

TU
/e Saturation

Invented in 2009 [MV09]
Procedure:

1. Generate a long list V' of random lattice vectors
2. “Reduce the vectors with each other":

» Set C=1(
» For each v € V, find the closest vector c € C

> If |[v —c|| < ||v]|, set v < v — ¢ and find new closest c € C
» If |[v—c|| >|lv||, add v to C

3. Find a shortest vector among the reduced vectors
Complexity?
e Space: |V|],|C|,|R| < 2%" for some «

e Classical Time: & 20n . pan — »2an

e Quantum Time:

TU
/e Saturation

Invented in 2009 [MV09]
Procedure:

1. Generate a long list V' of random lattice vectors
2. “Reduce the vectors with each other":

» Set C=1(
» For each v € V, find the closest vector c € C

> If |[v —c|| < ||v]|, set v < v — ¢ and find new closest c € C
» If |[v—c|| >|lv||, add v to C

3. Find a shortest vector among the reduced vectors
Complexity?

e Space: |V|],|C|,|R| < 2%" for some «

o Classical Time: a2 297 . 20N = p2an

e Quantum Time:; ~ 29" . /2an — p3an

TU
/e Saturation

Invented in 2009 [MV09]
Procedure:

1. Generate a long list V' of random lattice vectors
2. “Reduce the vectors with each other":

» Set C=1(
» For each v € V, find the closest vector c € C

> If |[v —c|| < ||v]|, set v < v — ¢ and find new closest c € C
» If |[v—c|| >|lv||, add v to C

3. Find a shortest vector among the reduced vectors
Complexity?

e Space: |V|],|C|,|R| < 2%" for some «

o Classical Time: a2 297 . 20N = p2an

e Quantum Time: =~ 29" . /2an — p3an

e Improvement: ~ 25% in the exponent

TU
/e Saturation

Invented in 2009 [MV09]
Procedure:

1. Generate a long list V' of random lattice vectors
2. “Reduce the vectors with each other":

» Set C=1(
» For each v € V, find the closest vector c € C

> If |[v —c|| < ||v]|, set v < v — ¢ and find new closest c € C
» If |[v—c|| >|lv||, add v to C

3. Find a shortest vector among the reduced vectors
Complexity?

e Space: |V|],|C|,|R]| < 2" for some o ~ 0.21

o Classical Time: a2 207 . 20" = 92an ~ 20-52n+o(n) [MV/(Q9]

o Quantum Time: & 297 . \/2an = 23N 4, 20.39n+o(n) [LMP13]

e Improvement: ~ 25% in the exponent

TU/e)
Enumeration

Invented in the early '80s [Poh81, Kan83, FP85]
Procedure:

1. “Guess” the nth coordinate (coefficient of basis vector bp,)

TU/e)
Enumeration

Invented in the early '80s [Poh81, Kan83, FP85]
Procedure:

1. “Guess” the nth coordinate (coefficient of basis vector bp,)

2. Find a shortest vector, given the nth coordinate

TU/e)
Enumeration

Invented in the early '80s [Poh81, Kan83, FP85]
Procedure:

1. “Guess” the nth coordinate (coefficient of basis vector bp,)
2. Find a shortest vector, given the nth coordinate

3. Search for a shortest vector among all of these vectors

TU/e)
Enumeration

Invented in the early '80s [Poh81, Kan83, FP85]
Procedure:

1. “Guess” the nth coordinate (coefficient of basis vector bp,)

2. Find a shortest vector, given the nth coordinate

3. Search for a shortest vector among all of these vectors
Recursive: Reduces SVP, (CVP,) to several instances of CVP,_;

TU/e .

. . Enumeration
. . Possible coefficients of b

. Enumeration
Possible coefficients of b

. Enumeration
Possible coefficients of b,

. Enumeration
Possible coefficients of b,

. Enumeration /
Possible coeﬂficieﬂn'"ts Qf"bg

. . i

Enumeratlon

. Guess the coeffncnent of b2 and solve CVPl

TU/e
Enumeratlon

1-2. Guess the coeffncnent of b2 and solve CVP1

TU/e
Enumeratlon

1-2. Guess the coefflaent of b2 and solve CVP1

TU/e
Enumeratlon

1-2. Guess the coefflaent of b2 and solve CVPl""v

TU/e
Enumeratlon

1-2. Guess the coefflaent of b2 and solve CVPl

TU/e
Enumeratlon

1-2. Guess the coefflaent of b2 and solve CVPl""v

TU/e
Enumeratlon

1-2. Guess the coefflaent of b2 and solve CVPl""v

TU/e
Enumeratlon

1-2. Guess the coefflaent of b2 and solve CVP1

TU/e
Enumeratlon

1-2. Guess the coefflaent of b2 and solve CVP1

TU/e
Enume rat i o n;

1-2. Guess the coefflaent of b2 and solve CVP1

TU/e
Enume rat i o n;

1-2. Guess the coefflaent of b2 and solve CVP1

TU/e
Enumeratlon

1-2. Guess the coefflaent of b2 and solve CVP1

TU/e
Enumeratlon

1-2. Guess the coefflaent of b2 and solve CVP1

TU/e
Enumeratlon

1-2. Guess the coefflaent of b2 and solve CVP1

TU/e
Enumeratlon

1-2. Guess the coefflaent of b2 and solve CVP1

TU/e

Enumeratlon

. Find a shortest veqtor among all of them

TU/e

° ° '

Enumeratlon

. Find a shortest veqtor among all of them

TU/e)
Enumeration

Invented in the early '80s [Poh81, Kan83, FP85]
Procedure:

1. Guess the nth coordinate (coefficient of basis vector b,)

2. Find a shortest vector, given the nth coordinate

3. Search for a shortest vector among all of these vectors
Recursive: Reduces SVP, (CVP,) to several instances of CVP,_;

TU/e)
Enumeration

Invented in the early '80s [Poh81, Kan83, FP85]
Procedure:

1. Guess the nth coordinate (coefficient of basis vector b,)
2. Find a shortest vector, given the nth coordinate
3. Search for a shortest vector among all of these vectors

Recursive: Reduces SVP, (CVP,) to several instances of CVP,_;
Complexity?

TU/e)
Enumeration

Invented in the early '80s [Poh81, Kan83, FP85]
Procedure:

1. Guess the nth coordinate (coefficient of basis vector b,)

2. Find a shortest vector, given the nth coordinate

3. Search for a shortest vector among all of these vectors
Recursive: Reduces SVP, (CVP,) to several instances of CVP,_;
Complexity?

e Space: (polynomial)

TU/e)
Enumeration

Invented in the early '80s [Poh81, Kan83, FP85]
Procedure:

1. Guess the nth coordinate (coefficient of basis vector b,)

2. Find a shortest vector, given the nth coordinate

3. Search for a shortest vector among all of these vectors
Recursive: Reduces SVP, (CVP,) to several instances of CVP,_;
Complexity?

e Space: (polynomial)

o Classical Time: 20(n'%g") [Kang3]

TU/e)
Enumeration

Invented in the early '80s [Poh81, Kan83, FP85]
Procedure:

1. Guess the nth coordinate (coefficient of basis vector b,)

2. Find a shortest vector, given the nth coordinate

3. Search for a shortest vector among all of these vectors
Recursive: Reduces SVP, (CVP,) to several instances of CVP,_;
Complexity?

e Space: (polynomial)

o Classical Time: 20(n'%g") [Kang3]

e Quantum Time: 20(nlogn)?

TU/e)
Overview

Theoretical results (large n)

Table: Complexities of SVP algorithms in logarithmic leading order
terms, ordered by their time complexities (descending).

Classical Quantum
Algorithm Time Space Time Space
Enum. [Kan83] O(nlogn) O(logn) O(nlogn) O(logn)
Sieving [PS09] 2.65n 1.33n 2.65n 1.33n
Saturation [PS09] 2.47n 1.24n 2.47n 1.24n

Voronoi cell [MV10] 2.00n 1.00n 2.00n 1.00n

TU/e)
Overview

Theoretical results (large n)

Table: Complexities of SVP algorithms in logarithmic leading order
terms, ordered by their time complexities (descending).

Classical Quantum
Algorithm Time Space Time Space
Enum. [Kan83] O(nlogn) O(logn) O(nlogn) O(logn)
Sieving [PS09] 2.65n 1.33n 2.65n 1.33n
Saturation [LMP13] 2.47n 1.24n 1.80n 1.29n

Voronoi cell [MV10] 2.00n 1.00n 2.00n 1.00n

TU
/e Overview

Theoretical results (large n)

Table: Complexities of SVP algorithms in logarithmic leading order
terms, ordered by their time complexities (descending).

Classical Quantum
Algorithm Time Space Time Space
Enum. [Kan83] O(nlogn) O(logn) O(nlogn) O(logn)
Sieving [PS09] 2.65n 1.33n 2.65n 1.33n
Voronoi cell [MV10] 2.00n 1.00n 2.00n 1.00n

Saturation [LMP13] 2.47n 1.24n 1.80n 1.29n

TU/e

Overview

Heuristic/Experimental results (n =~ 100)

Table: Complexities of SVP algorithms in logarithmic leading order
terms, ordered by their time complexities (descending).

Classical Quantum
Algorithm Time Space Time Space
Voronoi cell [MV10] 2.00n 1.00n 2.00n 1.00n
Sieving [NV08] 0.42n 0.21n 0.42n 0.21n
Saturation [MV09] 0.52n 0.21n 0.52n 0.21n

Enum. [GNR10] O(nlogn) O(logn) O(nlogn) O(logn)

TU
/e Overview

Heuristic/Experimental results (n =~ 100)

Table: Complexities of SVP algorithms in logarithmic leading order
terms, ordered by their time complexities (descending).

Classical Quantum
Algorithm Time Space Time Space
Voronoi cell [MV10] 2.00n 1.00n 2.00n 1.00n
Sieving [LMP13] 0.42n 0.21n 0.32n 0.21n
Saturation [LMP13] 0.52n 0.21n 0.39n 0.21n

Enum. [GNR10] O(nlogn) O(logn) O(nlogn) O(logn)

TU/e)
Conclusion

Results

o Faster sieving algorithms (exponent: —25%)

o Faster saturation algorithms (exponent: ~ —25%)
Open problems

e Improve enumeration algorithms?

Improve Voronoi cell algorithm?

Use other quantum algorithms?

Build a quantum computer?

TU
/e Questions

	Introduction
	Lattices
	Quantum Search

	Applications
	SVP Algorithms
	Sieving
	Saturation
	Enumeration

	Overview
	Conclusion

