

Quantum Cryptanalysis of Post-Quantum Cryptography

Thijs Laarhoven, Michele Mosca, Joop van de Pol

t.m.m.laarhoven@tue.nl
http://www.thijs.com/

PQCrypto 2013, Limoges, France (June 6, 2013)

Solving the Shortest Vector Problem in Lattices Faster Using Quantum Search

Thijs Laarhoven, Michele Mosca, Joop van de Pol

t.m.m.laarhoven@tue.nl
http://www.thijs.com/

PQCrypto 2013, Limoges, France (June 6, 2013)

Outline

Introduction

Lattices Quantum Search

Applications

SVP Algorithms

Sieving Saturation Enumeration

Overview

Conclusion

Lattices

What is a lattice?

Lattices

What is a lattice?

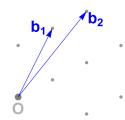
b₁₄ *b₂

.

•

Lattices

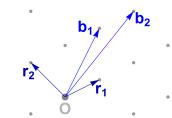
What is a lattice?



.

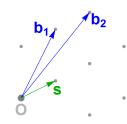
Lattices

Lattice Basis Reduction



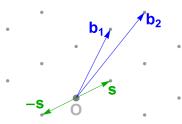
Lattices

• Shortest Vector Problem (SVP)



Lattices

• Shortest Vector Problem (SVP)



Lattices

Closest Vector Problem (CVP)

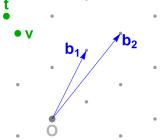
•



Lattices

Closest Vector Problem (CVP)

•



TU/e

Classical form

Problem: Given a list L of size N, and a function $f : L \to \{0, 1\}$ such that there is exactly one $e \in L$ with f(e) = 1. Find e.

Classical form

Problem: Given a list L of size N, and a function $f : L \to \{0, 1\}$ such that there is exactly one $e \in L$ with f(e) = 1. Find e.

• Classical search: $\Theta(N)$ time

TU/e

Classical form

Problem: Given a list L of size N, and a function $f : L \to \{0, 1\}$ such that there is exactly one $e \in L$ with f(e) = 1. Find e.

• Classical search: $\Theta(N)$ time

TU/e

• Quantum search: $\Theta(\sqrt{N})$ time [Gro96]

TU/e

General form

Problem: Given a list *L* of size *N*, and a function $f : L \to \{0, 1\}$ such that there are c = O(1) elements $e \in L$ with f(e) = 1. Find one such *e*.

General form

Problem: Given a list *L* of size *N*, and a function $f : L \to \{0, 1\}$ such that there are c = O(1) elements $e \in L$ with f(e) = 1. Find one such *e*.

• Classical search: $\Theta(N/c)$ time

TU/e

General form

Problem: Given a list *L* of size *N*, and a function $f : L \to \{0, 1\}$ such that there are c = O(1) elements $e \in L$ with f(e) = 1. Find one such *e*.

• Classical search: $\Theta(N/c)$ time

TU/e

• Quantum search: $\Theta(\sqrt{N/c})$ time [Gro96]

Applications

(Why do we care?)

• "Constructive cryptography": Lattice-based cryptosystems

- Based on hard lattice problems (SVP, CVP)
- NTRU cryptosystem [HPS98]
- Fully Homomorphic Encryption [Gen09]
- Candidate for "Post-Quantum" cryptography

Applications

(Why do we care?)

• "Constructive cryptography": Lattice-based cryptosystems

- Based on hard lattice problems (SVP, CVP)
- NTRU cryptosystem [HPS98]
- Fully Homomorphic Encryption [Gen09]
- Candidate for "Post-Quantum" cryptography
- "Destructive cryptography": Cryptanalysis
 - Attack knapsack-based cryptosystems [Sha82, LO85]
 - Attack variants of RSA [Cop96]
 - Attack DSA and ECDSA [NS02, NS03]
 - Attack lattice-based cryptosystems [Ngu99, JJ00]

Applications

(Why do we care?)

• "Constructive cryptography": Lattice-based cryptosystems

- Based on hard lattice problems (SVP, CVP)
- NTRU cryptosystem [HPS98]
- Fully Homomorphic Encryption [Gen09]
- Candidate for "Post-Quantum" cryptography
- "Destructive cryptography": Cryptanalysis
 - Attack knapsack-based cryptosystems [Sha82, LO85]
 - Attack variants of RSA [Cop96]
 - Attack DSA and ECDSA [NS02, NS03]
 - Attack lattice-based cryptosystems [Ngu99, JJ00]

How (quantum-)hard are hard lattice problems such as SVP?

Invented in 2001 [AKS01] Procedure:

1. Generate a long list V of random lattice vectors

Invented in 2001 [AKS01]

Procedure:

1. Generate a long list V of random lattice vectors

2. Split V into two sets C (centers, cover) and R (rest):

Invented in 2001 [AKS01]

Procedure:

1. Generate a long list V of random lattice vectors

2. Split V into two sets C (centers, cover) and R (rest):

▶ Set $C = \emptyset$ and $R = \emptyset$

Invented in 2001 [AKS01]

Procedure:

1. Generate a long list V of random lattice vectors

2. Split V into two sets C (centers, cover) and R (rest):

• Set
$$C = \emptyset$$
 and $R = \emptyset$

For each $v \in V$, find the closest $c \in C$

• If ||v - c|| is "large", add v to C

• If ||v - c|| is "small", add v - c to R

Invented in 2001 [AKS01]

Procedure:

1. Generate a long list V of random lattice vectors

2. Split V into two sets C (centers, cover) and R (rest):

• Set
$$C = \emptyset$$
 and $R = \emptyset$

For each $v \in V$, find the closest $c \in C$

• If ||v - c|| is "large", add v to C

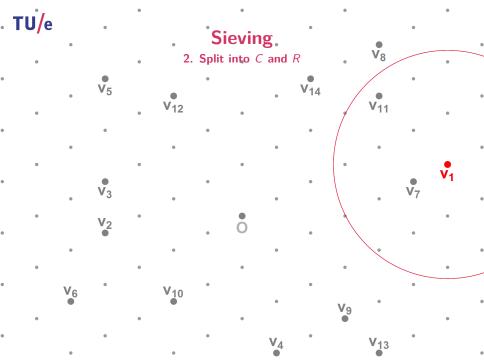
• If ||v - c|| is "small", add v - c to R

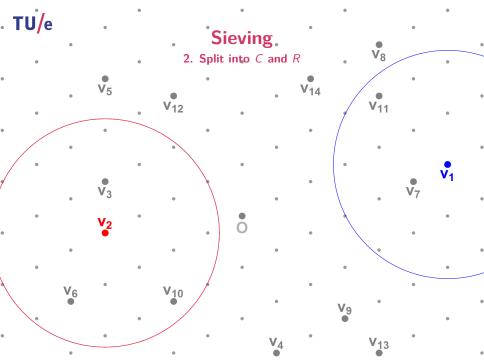
3. Set V = R and repeat until V contains a shortest vector

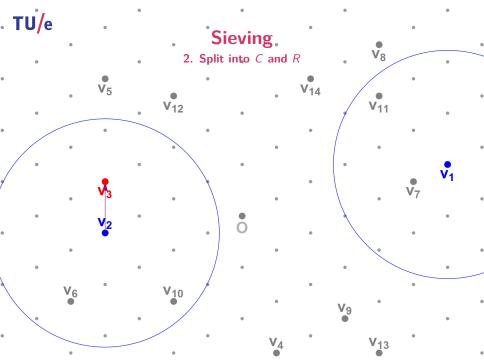
.

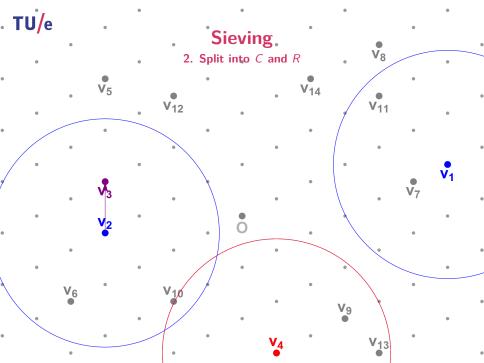
Sieving.

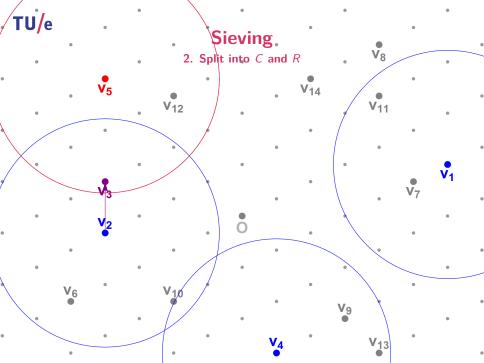
. 1. Generate random lattice vectors .

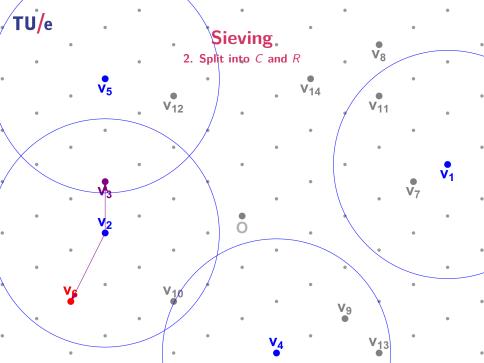


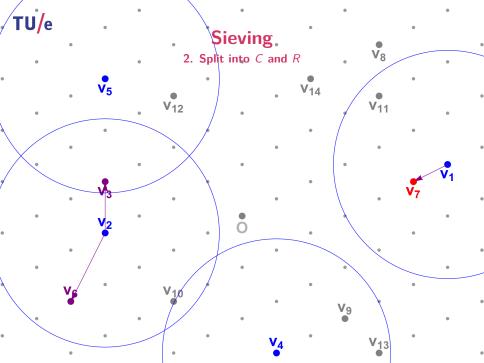


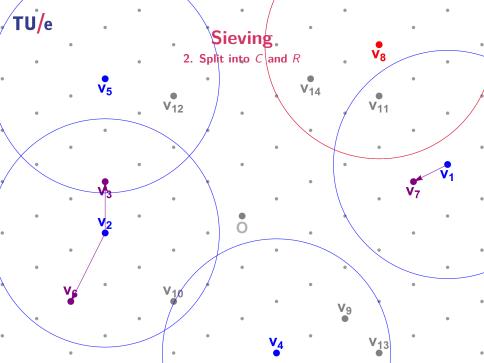


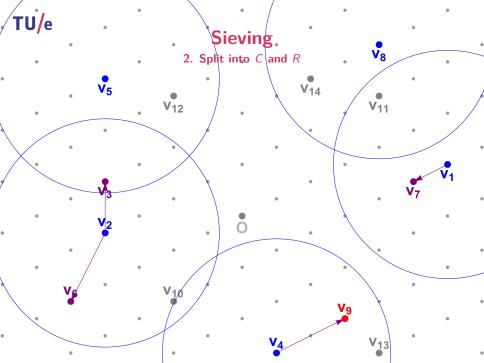


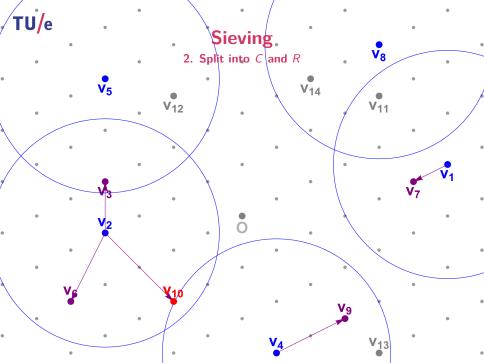


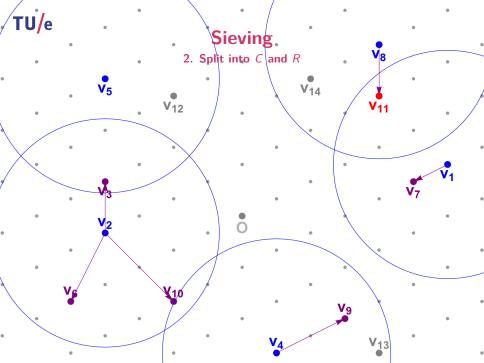


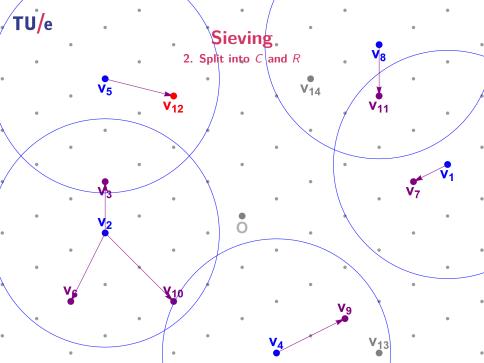


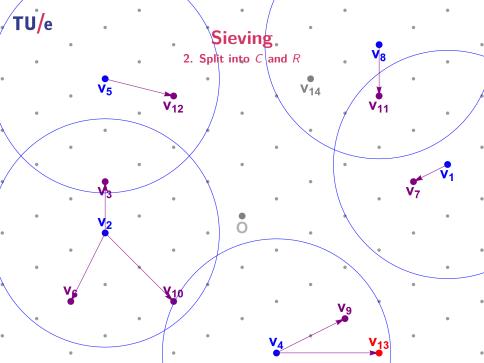


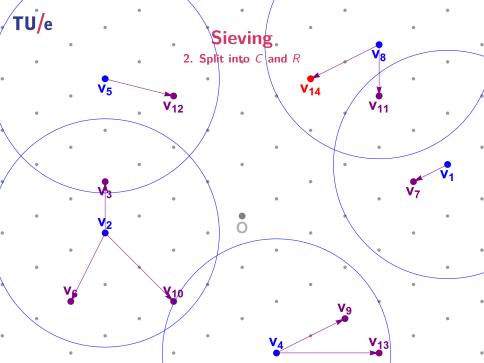


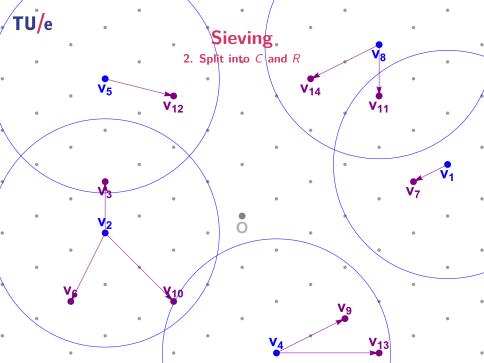


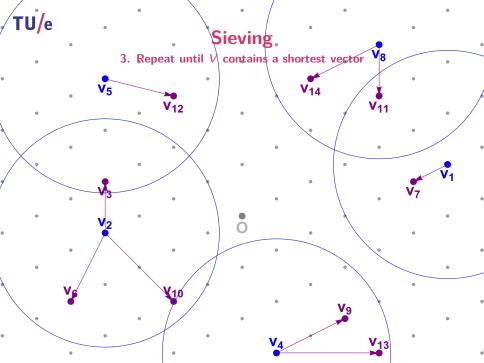


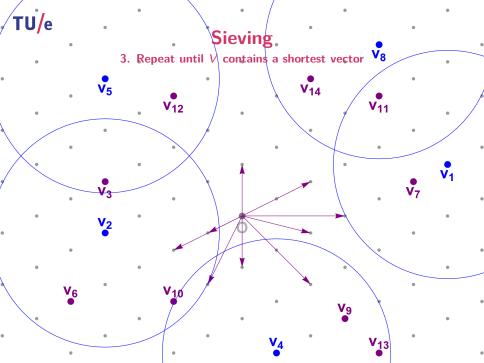












V₆

Sieving. 3. Repeat until V contains a shortest vector V_8 V₁₄ V₅ V₁₂ V₁₁ V۱ V₇ v₄ V₃ V₈ **V**7 V₂ V3 V₉ V₆ V₂ V₅ V₁₀ V₉

V4

.

V₁

V₁₃

V₆

Sieving. 3. Repeat until V contains a shortest vector V_8 V₁₄ V₅ V₁₂ V₁₁ V۱ V₇ v₄ V₃ V₈ **V**7 V₂ V₃ V₉ V₆ V₂ V₅ V₁₀ V₉

V4

.

V₁

V₁₃

Sieving.

Invented in 2001 [AKS01] Procedure:

- 1. Generate a long list V of random lattice vectors
- 2. Split V into two sets C (centers, cover) and R (rest):

• Set
$$C = \emptyset$$
 and $R = \emptyset$

- For each $v \in V$, find the closest $c \in C$
 - If ||v c|| is "large", add v to C
 - If ||v c|| is "small", add v c to R

Sieving.

Invented in 2001 [AKS01] Procedure:

- 1. Generate a long list V of random lattice vectors
- 2. Split V into two sets C (centers, cover) and R (rest):

• Set
$$C = \emptyset$$
 and $R = \emptyset$

- For each $v \in V$, find the closest $c \in C$
 - If ||v c|| is "large", add v to C
 - If ||v c|| is "small", add v c to R

Sieving.

Invented in 2001 [AKS01] Procedure:

- 1. Generate a long list V of random lattice vectors
- 2. Split V into two sets C (centers, cover) and R (rest):

• Set
$$C = \emptyset$$
 and $R = \emptyset$

- For each $v \in V$, find the closest $c \in C$
 - If ||v c|| is "large", add v to C
 - If ||v c|| is "small", add v c to R

3. Set V = R and repeat until V contains a shortest vector Complexity?

• Space: $|V|, |C|, |R| \leq 2^{\alpha n}$ for some α

Sieving.

Invented in 2001 [AKS01] Procedure:

- 1. Generate a long list V of random lattice vectors
- 2. Split V into two sets C (centers, cover) and R (rest):
 - Set $C = \emptyset$ and $R = \emptyset$
 - For each $v \in V$, find the closest $c \in C$
 - If ||v c|| is "large", add v to C
 - If ||v c|| is "small", add v c to R

- Space: $|V|, |C|, |R| \leq 2^{\alpha n}$ for some α
- Classical Time:
- Quantum Time:

Sieving.

Invented in 2001 [AKS01] Procedure:

- 1. Generate a long list V of random lattice vectors
- 2. Split V into two sets C (centers, cover) and R (rest):
 - Set $C = \emptyset$ and $R = \emptyset$
 - For each $v \in V$, find the closest $c \in C$
 - If ||v c|| is "large", add v to C
 - If ||v c|| is "small", add v c to R

3. Set V = R and repeat until V contains a shortest vector Complexity?

- Space: $|V|, |C|, |R| \leq 2^{\alpha n}$ for some α
- Classical Time: $\approx 2^{\alpha n} \cdot 2^{\alpha n} = 2^{2\alpha n}$

• Quantum Time:

Sieving.

Invented in 2001 [AKS01] Procedure:

- 1. Generate a long list V of random lattice vectors
- 2. Split V into two sets C (centers, cover) and R (rest):

• Set
$$C = \emptyset$$
 and $R = \emptyset$

- For each $v \in V$, find the closest $c \in C$
 - If ||v c|| is "large", add v to C
 - If ||v c|| is "small", add v c to R

- Space: $|V|, |C|, |R| \leq 2^{\alpha n}$ for some α
- Classical Time: $\approx 2^{\alpha n} \cdot 2^{\alpha n} = 2^{2\alpha n}$
- Quantum Time: $\approx 2^{\alpha n} \cdot \sqrt{2^{\alpha n}} = 2^{\frac{3}{2}\alpha n}$

Sieving.

Invented in 2001 [AKS01] Procedure:

- 1. Generate a long list V of random lattice vectors
- 2. Split V into two sets C (centers, cover) and R (rest):
 - Set $C = \emptyset$ and $R = \emptyset$
 - ▶ For each $v \in V$, find the closest $c \in C$
 - If ||v c|| is "large", add v to C
 - If ||v c|| is "small", add v c to R

- Space: $|V|, |C|, |R| \leq 2^{\alpha n}$ for some α
- Classical Time: $\approx 2^{\alpha n} \cdot 2^{\alpha n} = 2^{2\alpha n}$
- Quantum Time: $\approx 2^{\alpha n} \cdot \sqrt{2^{\alpha n}} = 2^{\frac{3}{2}\alpha n}$
- Improvement: 25% in the exponent

Sieving.

Invented in 2001 [AKS01] Procedure:

- 1. Generate a long list V of random lattice vectors
- 2. Split V into two sets C (centers, cover) and R (rest):
 - Set $C = \emptyset$ and $R = \emptyset$
 - ▶ For each $v \in V$, find the closest $c \in C$
 - If ||v c|| is "large", add v to C
 - If ||v c|| is "small", add v c to R

- Space: $|V|, |C|, |R| \leq 2^{\alpha n}$ for some $\alpha \approx 0.21$
- Classical Time: $\approx 2^{\alpha n} \cdot 2^{\alpha n} = 2^{2\alpha n} \approx 2^{0.42n+o(n)}$ [NV08]
- Quantum Time: $\approx 2^{\alpha n} \cdot \sqrt{2^{\alpha n}} = 2^{\frac{3}{2}\alpha n} \approx 2^{0.31n+o(n)}$ [LMP13]
- Improvement: 25% in the exponent

Invented in 2009 [MV09] Procedure:

1. Generate a long list V of random lattice vectors

Invented in 2009 [MV09]

Procedure:

1. Generate a long list V of random lattice vectors

2. "Reduce the vectors with each other":

Invented in 2009 [MV09]

Procedure:

1. Generate a long list V of random lattice vectors

2. "Reduce the vectors with each other":

• Set $C = \emptyset$

Invented in 2009 [MV09]

Procedure:

1. Generate a long list V of random lattice vectors

2. "Reduce the vectors with each other":

- Set $C = \emptyset$
- For each $v \in V$, find the closest vector $c \in C$

▶ If ||v - c|| < ||v||, set $v \leftarrow v - c$ and find new closest $c \in C$ ▶ If $||v - c|| \ge ||v||$, add v to C

Invented in 2009 [MV09]

Procedure:

1. Generate a long list V of random lattice vectors

2. "Reduce the vectors with each other":

• Set $C = \emptyset$

• For each $v \in V$, find the closest vector $c \in C$

▶ If ||v - c|| < ||v||, set $v \leftarrow v - c$ and find new closest $c \in C$ ▶ If $||v - c|| \ge ||v||$, add v to C

3. Search C for a shortest vector

.

Saturation

.

. 1. Generate random lattice vectors .

Saturation

.

V₁₂

V₁₀

V₅

V₃

V₂

V₆

. 1. Generate random lattice vectors .

V₁₄

v₈

V₁₁

٧g

V₁₃

V4

V₁

V7

Saturation

.

V₁₂

V₁₀

V₅

V₃

V₂

V₆

2. Reduce the vectors with each other

V₁₄

V₈

V₁₁

V₉

V4

V₁₃

V1

Saturation

.

V₁₂

V₁₀

V₅

V₃

V₂

V₆

2. Reduce the vectors with each other

V₁₄

V₈

V₁₁

V₉

V4

V₁₃

V1

V₅

V₃

V₆

V₁₂

V₁₀

Saturation

2. Reduce the vectors with each other

V₁₄

V₈

V₁₁

V₉

V₄

V₁₃

V₁

V4

V₈

V₁₁

V₁

Saturation

.

V₁₂

V₁₀

V₅

V₃

V₂

V₆

2. Reduce the vectors with each other

V₃

V₁₄

v₂

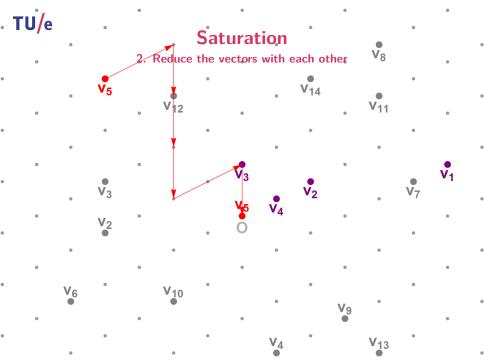
٧g

V₁₃

V₈

V₁₁

V1



V₅

V₃

V₂

V₆

V₁₂

V₁₀

Saturation

2. Reduce the vectors with each other

V₃

V₁₄

V₂

V₄

V9

V₁₃

V₈

V₁₁

V۱

V₅

V₃

V₂

V₆

V₁₂

V₁₀

Saturation

2. Reduce the vectors with each other

V₃

V₁₄

v₂

V4

V9

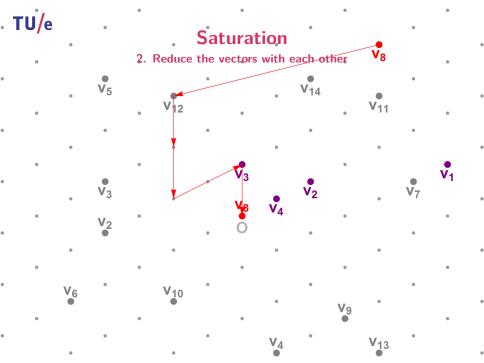
V₁₃

V₈

V₁₁

V₁

V7



V₅

V₃

V₂

V₆

V₁₂

V₁₀

Saturation

2. Reduce the vectors with each other

V₃

V₁₄

V₂

V₈

V₁₁

V₁₃

٧ı

Saturation

.

V₁₂

V₅

V₃

V₂

V₆

2. Reduce the vectors with each other

V₃

V₁₄

V₂

V9

V₁₃

v₄

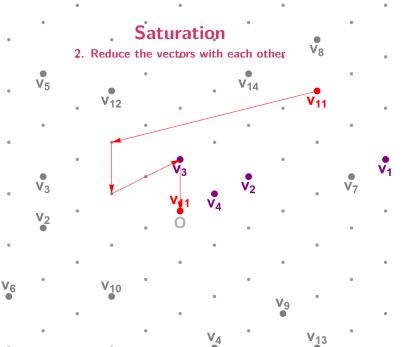
V4

V₈

V₁₁

٧ı

Ň7



Saturation

.

V₁₀

V₅

V₃

V₂

V₆

2. Reduce the vectors with each other

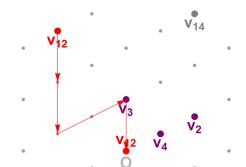
V₈

V₁₁

V9

V₁₃

Ň7



V4

Saturation

.

V₁₂

V₁₀

V₅

V₃

V₂

V₆

2. Reduce the vectors with each other

V₃

V₁₄

v₂

V₉

13

V₄

V₄

V₈

 V_{11}

V۱

V₅

V₃

V₂

V₁₀

V₆

Saturation

V₈

V₁₁

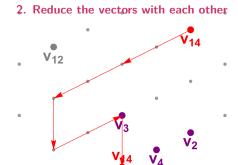
V9

V4

V₁₃

٧ı

Ň7



Saturation

.

V₁₂

V₁₀

V₅

V₃

V₂

V₆

2. Reduce the vectors with each other

V₃

V₁₄

V₂

V₉

V₁₃

 v_4

V4

V₈

V₁₁

V1

V₅

V₃

V₂

V₆

V₁₂

V₁₀

Saturation

3. Search *C* for a shortest vector

V₃

V₁₄

V₂

V₉

V₁₃

 v_4

V4

V₈

V₁₁

V₁

V₅

V₃

V₂

V₆

V₁₂

V₁₀

Saturation

3. Search *C* for a shortest vector

V₃

V₁₄

V₂

V₉

V₁₃

v₄

V4

V₈

V₁₁

V₁

Invented in 2009 [MV09]

Procedure:

TU/e

- 1. Generate a long list V of random lattice vectors
- 2. "Reduce the vectors with each other":

• Set
$$C = \emptyset$$

- For each $v \in V$, find the closest vector $c \in C$
 - If $\|v c\| < \|v\|$, set $v \leftarrow v c$ and find new closest $c \in C$

• If
$$||v - c|| \ge ||v||$$
, add v to C

3. Find a shortest vector among the reduced vectors

Invented in 2009 [MV09]

Procedure:

TU/e

- 1. Generate a long list V of random lattice vectors
- 2. "Reduce the vectors with each other":

• Set
$$C = \emptyset$$

- For each $v \in V$, find the closest vector $c \in C$
 - ► If ||v c|| < ||v||, set $v \leftarrow v c$ and find new closest $c \in C$ ► If ||v - c|| < ||v||, add v to C

• If
$$\|v - c\| \ge \|v\|$$
, add v to C

3. Find a shortest vector among the reduced vectors Complexity?

Invented in 2009 [MV09]

Procedure:

- 1. Generate a long list V of random lattice vectors
- 2. "Reduce the vectors with each other":

▶ Set
$$C = \emptyset$$

- For each $v \in V$, find the closest vector $c \in C$
 - ▶ If ||v c|| < ||v||, set $v \leftarrow v c$ and find new closest $c \in C$ ▶ If ||v - c|| > ||v||, add v to C
- 3. Find a shortest vector among the reduced vectors Complexity?
 - Space: $|V|, |C|, |R| \leq 2^{\alpha n}$ for some α

Invented in 2009 [MV09]

Procedure:

- 1. Generate a long list V of random lattice vectors
- 2. "Reduce the vectors with each other":

• Set
$$C = \emptyset$$

- For each $v \in V$, find the closest vector $c \in C$
 - ▶ If ||v c|| < ||v||, set $v \leftarrow v c$ and find new closest $c \in C$ ▶ If ||v - c|| > ||v||, add v to C

If
$$||v - c|| \ge ||v||$$
, add v to C

- 3. Find a shortest vector among the reduced vectors Complexity?
 - Space: $|V|, |C|, |R| \leq 2^{\alpha n}$ for some α
 - Classical Time:
 - Quantum Time:

Invented in 2009 [MV09]

Procedure:

TU/e

- 1. Generate a long list V of random lattice vectors
- 2. "Reduce the vectors with each other":

• Set
$$C = \emptyset$$

- For each $v \in V$, find the closest vector $c \in C$
 - ▶ If ||v c|| < ||v||, set $v \leftarrow v c$ and find new closest $c \in C$

• If
$$||v - c|| \ge ||v||$$
, add v to C

- 3. Find a shortest vector among the reduced vectors Complexity?
 - Space: $|V|, |C|, |R| \leq 2^{\alpha n}$ for some α
 - Classical Time: $\approx 2^{\alpha n} \cdot 2^{\alpha n} = 2^{2\alpha n}$

Quantum Time:

Invented in 2009 [MV09]

Procedure:

- 1. Generate a long list V of random lattice vectors
- 2. "Reduce the vectors with each other":

• Set
$$C = \emptyset$$

- For each $v \in V$, find the closest vector $c \in C$
 - ▶ If ||v c|| < ||v||, set $v \leftarrow v c$ and find new closest $c \in C$ ▶ If ||v - c|| > ||v||, add v to C
- 3. Find a shortest vector among the reduced vectors Complexity?
 - Space: $|V|, |C|, |R| \leq 2^{\alpha n}$ for some α
 - Classical Time: $\approx 2^{\alpha n} \cdot 2^{\alpha n} = 2^{2\alpha n}$
 - Quantum Time: $\approx 2^{\alpha n} \cdot \sqrt{2^{\alpha n}} = 2^{\frac{3}{2}\alpha n}$

Invented in 2009 [MV09]

Procedure:

- 1. Generate a long list V of random lattice vectors
- 2. "Reduce the vectors with each other":

• Set
$$C = \emptyset$$

- For each $v \in V$, find the closest vector $c \in C$
 - ▶ If ||v c|| < ||v||, set $v \leftarrow v c$ and find new closest $c \in C$ ▶ If $||v - c|| \ge ||v||$, add v to C
- 3. Find a shortest vector among the reduced vectors Complexity?
 - Space: $|V|, |C|, |R| \leq 2^{\alpha n}$ for some α
 - Classical Time: $\approx 2^{\alpha n} \cdot 2^{\alpha n} = 2^{2\alpha n}$
 - Quantum Time: $\approx 2^{\alpha n} \cdot \sqrt{2^{\alpha n}} = 2^{\frac{3}{2}\alpha n}$
 - Improvement: pprox 25% in the exponent

Invented in 2009 [MV09]

Procedure:

- 1. Generate a long list V of random lattice vectors
- 2. "Reduce the vectors with each other":

• Set
$$C = \emptyset$$

- For each $v \in V$, find the closest vector $c \in C$
 - ▶ If ||v c|| < ||v||, set $v \leftarrow v c$ and find new closest $c \in C$ ▶ If $||v - c|| \ge ||v||$, add v to C
- 3. Find a shortest vector among the reduced vectors Complexity?
 - Space: $|V|, |C|, |R| \leq 2^{\alpha n}$ for some $\alpha \approx 0.21$
 - Classical Time: $\approx 2^{\alpha n} \cdot 2^{\alpha n} = 2^{2\alpha n} \approx 2^{0.52n+o(n)}$ [MV09]
 - Quantum Time: $\approx 2^{\alpha n} \cdot \sqrt{2^{\alpha n}} = 2^{\frac{3}{2}\alpha n} \approx 2^{0.39n+o(n)}$ [LMP13]
 - Improvement: pprox 25% in the exponent

Invented in the early '80s [Poh81, Kan83, FP85] Procedure:

1. "Guess" the *n*th coordinate (coefficient of basis vector b_n)

Invented in the early '80s [Poh81, Kan83, FP85] Procedure:

1. "Guess" the *n*th coordinate (coefficient of basis vector b_n)

2. Find a shortest vector, given the *n*th coordinate

Invented in the early '80s [Poh81, Kan83, FP85] Procedure:

- 1. "Guess" the *n*th coordinate (coefficient of basis vector b_n)
- 2. Find a shortest vector, given the *n*th coordinate
- 3. Search for a shortest vector among all of these vectors

Invented in the early '80s [Poh81, Kan83, FP85] Procedure:

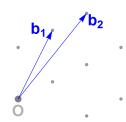
1. "Guess" the *n*th coordinate (coefficient of basis vector b_n)

2. Find a shortest vector, given the *n*th coordinate

3. Search for a shortest vector among all of these vectors Recursive: Reduces SVP_n (CVP_n) to several instances of CVP_{n-1}

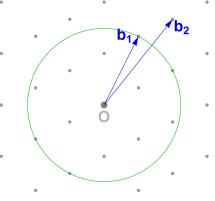
Enumeration

Possible coefficients of b_2



Enumeration

Possible coefficients of *b*₂



Enumeration

Possible coefficients of *b*₂

b₁

Enumeration

Possible coefficients of *b*₂

b₁

b₂

Possible coefficients of b_2

D1

 b_2

b

Enumeration

.

1-2. Guess the coefficient of b_2 and solve CVP_V

D1

 b_2

b

Enumeration

1-2. Guess the coefficient of b_2 and solve CVP_V

D1

 b_2

Enumeration

1-2. Guess the coefficient of b_2 and solve CVP_V

V₀

b1

 b_2

-V₀

Enumeration

1-2. Guess the coefficient of b_2 and solve CVP_V

V₀

b1

 b_2

-V0

Enumeration

1-2. Guess the coefficient of b_2 and solve CVP_V

Vo

b1

 b_2

-V₀

Enumeration

1-2. Guess the coefficient of b_2 and solve CVP_V

Vo

b1

b₂

-V₀

Enumeration

1-2. Guess the coefficient of b_2 and solve CVP_V

Vo

b1

b₂

V₀

Enumeration

1-2. Guess the coefficient of b_2 and solve CVP_V

Vo

b1

b₂

V₀

Enumeration

1-2. Guess the coefficient of b_2 and solve CVP_V

Vo

b1

b₂*

V₀

b

V3

Enumeration

1-2. Guess the coefficient of b_2 and solve CVP_V

Vo

b1

b₂*

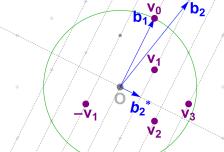
-V0

b₂

V3

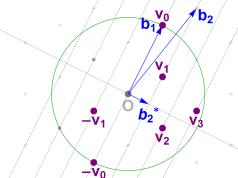
Enumeration

1-2. Guess the coefficient of b_2 and solve CVP_V

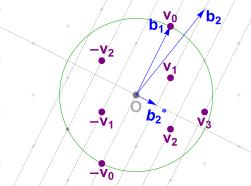


-V0

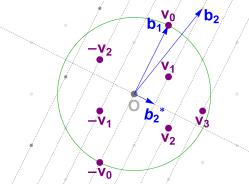
Enumeration



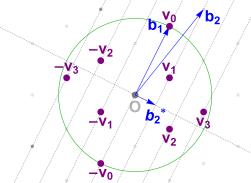
Enumeration



Enumeration



Enumeration



. TU/e

Enumeration

.

3. Find a shortest vector among all of them

V₀

b1

b₂

V₀

b

V3

. TU/e

Enumeration

.

3. Find a shortest vector among all of them

V₀

b1

b₂

-V0

b

V3

Invented in the early '80s [Poh81, Kan83, FP85] Procedure:

U/e

1. Guess the *n*th coordinate (coefficient of basis vector b_n)

2. Find a shortest vector, given the *n*th coordinate

3. Search for a shortest vector among all of these vectors

Recursive: Reduces SVP_n (CVP_n) to several instances of CVP_{n-1}

Invented in the early '80s [Poh81, Kan83, FP85] Procedure:

U/e

1. Guess the *n*th coordinate (coefficient of basis vector b_n)

2. Find a shortest vector, given the *n*th coordinate

3. Search for a shortest vector among all of these vectors Recursive: Reduces SVP_n (CVP_n) to several instances of CVP_{n-1} Complexity?

Invented in the early '80s [Poh81, Kan83, FP85] Procedure:

- 1. Guess the *n*th coordinate (coefficient of basis vector b_n)
- 2. Find a shortest vector, given the *n*th coordinate

3. Search for a shortest vector among all of these vectors Recursive: Reduces SVP_n (CVP_n) to several instances of CVP_{n-1} Complexity?

• Space: (polynomial)

U/e

Invented in the early '80s [Poh81, Kan83, FP85] Procedure:

- 1. Guess the *n*th coordinate (coefficient of basis vector b_n)
- 2. Find a shortest vector, given the *n*th coordinate

3. Search for a shortest vector among all of these vectors Recursive: Reduces SVP_n (CVP_n) to several instances of CVP_{n-1} Complexity?

• Space: (polynomial)

TU/e

• Classical Time: 2^{O(n log n)} [Kan83]

Invented in the early '80s [Poh81, Kan83, FP85] Procedure:

- 1. Guess the *n*th coordinate (coefficient of basis vector b_n)
- 2. Find a shortest vector, given the *n*th coordinate

3. Search for a shortest vector among all of these vectors Recursive: Reduces SVP_n (CVP_n) to several instances of CVP_{n-1} Complexity?

• Space: (polynomial)

TU/e

- Classical Time: 2^{O(n log n)} [Kan83]
- Quantum Time: 2^{O(n log n)}?

Overview

TU/e

Theoretical results (large n)

	Classical Quantum			Quantum
Algorithm	Time	Space	Time	Space
Enum. [Kan83]	$O(n \log n)$	$O(\log n)$	$O(n \log n)$	$O(\log n)$
Sieving [PS09]	2.65 <i>n</i>	1.33 <i>n</i>	2.65 <i>n</i>	1.33 <i>n</i>
Saturation [PS09]	2.47 <i>n</i>	1.24 <i>n</i>	2.47 <i>n</i>	1.24 <i>n</i>
Voronoi cell [MV10]	2.00 <i>n</i>	1.00 <i>n</i>	2.00 <i>n</i>	1.00 <i>n</i>

Overview Theoretical results (large *n*)

•	Classical Quantum			Quantum
Algorithm	Time	Space	Time	Space
Enum. [Kan83]	$O(n \log n)$	$O(\log n)$	$O(n \log n)$	$O(\log n)$
Sieving [PS09]	2.65 <i>n</i>	1.33 <i>n</i>	2.65 <i>n</i>	1.33 <i>n</i>
Saturation [LMP13]	2.47 <i>n</i>	1.24 <i>n</i>	1.80n	1.29n
Voronoi cell [MV10]	2.00 <i>n</i>	1.00 <i>n</i>	2.00 <i>n</i>	1.00 <i>n</i>

Overview

TU/e

Theoretical results (large n)

٠	Classical Quantum			Quantum
Algorithm	Time	Space	Time	Space
Enum. [Kan83]	$O(n \log n)$	$O(\log n)$	$O(n \log n)$	$O(\log n)$
Sieving [PS09]	2.65 <i>n</i>	1.33 <i>n</i>	2.65 <i>n</i>	1.33 <i>n</i>
Voronoi cell [MV10]	2.00 <i>n</i>	1.00 <i>n</i>	2.00 <i>n</i>	1.00 <i>n</i>
Saturation [LMP13]	2.47 <i>n</i>	1.24 <i>n</i>	1.80n	1.29n

Overview

Heuristic/Experimental results ($n \approx 100$)

· · · · · · · · · · · · · · · · · · ·						
0	•	Classical		Quantum		
Algorithm	Time	Space	Time	Space		
Voronoi cell [MV10]	2.00 <i>n</i>	1.00 <i>n</i>	2.00 <i>n</i>	1.00 <i>n</i>		
Sieving [NV08]	0.42 <i>n</i>	0.21 <i>n</i>	0.42 <i>n</i>	0.21 <i>n</i>		
Saturation [MV09]	0.52 <i>n</i>	0.21 <i>n</i>	0.52 <i>n</i>	0.21 <i>n</i>		
Enum. [GNR10]	$O(n \log n)$	$O(\log n)$	$O(n \log n)$	$O(\log n)$		

Overview

Heuristic/Experimental results ($n \approx 100$)

0	•	Classical	(Quantum		
Algorithm	Time	Space	Time	Space		
Voronoi cell [MV10]	2.00 <i>n</i>	1.00 <i>n</i>	2.00 <i>n</i>	1.00 <i>n</i>		
Sieving [LMP13]	0.42 <i>n</i>	0.21 <i>n</i>	0.32n	0.21n		
Saturation [LMP13]	0.52 <i>n</i>	0.21 <i>n</i>	0.39n	0.21n		
Enum. [GNR10]	$O(n \log n)$	$O(\log n)$	$O(n \log n)$	$O(\log n)$		

Conclusion

Results

- Faster sieving algorithms (exponent: -25%)
- Faster saturation algorithms (exponent: $\approx -25\%)$
- Open problems
 - Improve enumeration algorithms?
 - Improve Voronoi cell algorithm?
 - Use other quantum algorithms?
 - Build a quantum computer? •

Questions

