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e “Destructive cryptography”: Cryptanalysis

Attack knapsack-based cryptosystems [Sha82, LO85]
Attack variants of RSA [Cop96]

Attack DSA and ECDSA [NS02, NS03]

Attack lattice-based cryptosystems [Ngu99, JJ0O]
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How (quantum-)hard are hard lattice problems such as SVP?
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Complexity?
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Complexity?
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o Quantum Time: & 297 . \/2an = 23N 4, 20.39n+o(n) [LMP13]
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TU/e )
Enumeration

Invented in the early '80s [Poh81, Kan83, FP85]
Procedure:

1. “Guess” the nth coordinate (coefficient of basis vector bp,)



TU/e )
Enumeration

Invented in the early '80s [Poh81, Kan83, FP85]
Procedure:

1. “Guess” the nth coordinate (coefficient of basis vector bp,)

2. Find a shortest vector, given the nth coordinate



TU/e )
Enumeration

Invented in the early '80s [Poh81, Kan83, FP85]
Procedure:

1. “Guess” the nth coordinate (coefficient of basis vector bp,)
2. Find a shortest vector, given the nth coordinate

3. Search for a shortest vector among all of these vectors



TU/e )
Enumeration

Invented in the early '80s [Poh81, Kan83, FP85]
Procedure:

1. “Guess” the nth coordinate (coefficient of basis vector bp,)

2. Find a shortest vector, given the nth coordinate

3. Search for a shortest vector among all of these vectors
Recursive: Reduces SVP, (CVP,) to several instances of CVP,_;



TU/e .

. . Enumeration
. . Possible coefficients of b



. Enumeration
Possible coefficients of b




. Enumeration
Possible coefficients of b,




. Enumeration
Possible coefficients of b,




. Enumeration /
Possible coeﬂficieﬂn'"ts Qf"bg




. . i

Enumeratlon

. Guess the coeffncnent of b2 and solve CVPl




TU/e
Enumeratlon

1-2. Guess the coeffncnent of b2 and solve CVP1




TU/e
Enumeratlon

1-2. Guess the coefflaent of b2 and solve CVP1




TU/e
Enumeratlon

1-2. Guess the coefflaent of b2 and solve CVPl""v




TU/e
Enumeratlon

1-2. Guess the coefflaent of b2 and solve CVPl




TU/e
Enumeratlon

1-2. Guess the coefflaent of b2 and solve CVPl""v




TU/e
Enumeratlon

1-2. Guess the coefflaent of b2 and solve CVPl""v




TU/e
Enumeratlon

1-2. Guess the coefflaent of b2 and solve CVP1




TU/e
Enumeratlon

1-2. Guess the coefflaent of b2 and solve CVP1




TU/e
Enume rat i o n;

1-2. Guess the coefflaent of b2 and solve CVP1




TU/e
Enume rat i o n;

1-2. Guess the coefflaent of b2 and solve CVP1




TU/e
Enumeratlon

1-2. Guess the coefflaent of b2 and solve CVP1




TU/e
Enumeratlon

1-2. Guess the coefflaent of b2 and solve CVP1




TU/e
Enumeratlon

1-2. Guess the coefflaent of b2 and solve CVP1




TU/e
Enumeratlon

1-2. Guess the coefflaent of b2 and solve CVP1




TU/e

Enumeratlon

. Find a shortest veqtor among all of them




TU/e

° ° '

Enumeratlon

. Find a shortest veqtor among all of them




TU/e )
Enumeration

Invented in the early '80s [Poh81, Kan83, FP85]
Procedure:

1. Guess the nth coordinate (coefficient of basis vector b,)

2. Find a shortest vector, given the nth coordinate

3. Search for a shortest vector among all of these vectors
Recursive: Reduces SVP, (CVP,) to several instances of CVP,_;



TU/e )
Enumeration

Invented in the early '80s [Poh81, Kan83, FP85]
Procedure:

1. Guess the nth coordinate (coefficient of basis vector b,)
2. Find a shortest vector, given the nth coordinate
3. Search for a shortest vector among all of these vectors

Recursive: Reduces SVP, (CVP,) to several instances of CVP,_;
Complexity?



TU/e )
Enumeration

Invented in the early '80s [Poh81, Kan83, FP85]
Procedure:

1. Guess the nth coordinate (coefficient of basis vector b,)

2. Find a shortest vector, given the nth coordinate

3. Search for a shortest vector among all of these vectors
Recursive: Reduces SVP, (CVP,) to several instances of CVP,_;
Complexity?

e Space: (polynomial)



TU/e )
Enumeration

Invented in the early '80s [Poh81, Kan83, FP85]
Procedure:

1. Guess the nth coordinate (coefficient of basis vector b,)

2. Find a shortest vector, given the nth coordinate

3. Search for a shortest vector among all of these vectors
Recursive: Reduces SVP, (CVP,) to several instances of CVP,_;
Complexity?

e Space: (polynomial)

o Classical Time: 20(n'%g") [Kang3]



TU/e )
Enumeration

Invented in the early '80s [Poh81, Kan83, FP85]
Procedure:

1. Guess the nth coordinate (coefficient of basis vector b,)

2. Find a shortest vector, given the nth coordinate

3. Search for a shortest vector among all of these vectors
Recursive: Reduces SVP, (CVP,) to several instances of CVP,_;
Complexity?

e Space: (polynomial)

o Classical Time: 20(n'%g") [Kang3]

e Quantum Time: 20(nlogn)?
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Overview

Theoretical results (large n)

Table: Complexities of SVP algorithms in logarithmic leading order
terms, ordered by their time complexities (descending).

Classical Quantum
Algorithm Time Space Time Space
Enum. [Kan83] O(nlogn) O(logn) O(nlogn) O(logn)
Sieving [PS09] 2.65n 1.33n 2.65n 1.33n
Saturation [PS09] 2.47n 1.24n 2.47n 1.24n

Voronoi cell [MV10] 2.00n 1.00n 2.00n 1.00n
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Overview

Theoretical results (large n)

Table: Complexities of SVP algorithms in logarithmic leading order
terms, ordered by their time complexities (descending).

Classical Quantum
Algorithm Time Space Time Space
Enum. [Kan83] O(nlogn) O(logn) O(nlogn) O(logn)
Sieving [PS09] 2.65n 1.33n 2.65n 1.33n
Saturation [LMP13] 2.47n 1.24n 1.80n 1.29n

Voronoi cell [MV10] 2.00n 1.00n 2.00n 1.00n
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Theoretical results (large n)

Table: Complexities of SVP algorithms in logarithmic leading order
terms, ordered by their time complexities (descending).

Classical Quantum
Algorithm Time Space Time Space
Enum. [Kan83] O(nlogn) O(logn) O(nlogn) O(logn)
Sieving [PS09] 2.65n 1.33n 2.65n 1.33n
Voronoi cell [MV10] 2.00n 1.00n 2.00n 1.00n

Saturation [LMP13] 2.47n 1.24n 1.80n 1.29n
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Overview

Heuristic/Experimental results (n =~ 100)

Table: Complexities of SVP algorithms in logarithmic leading order
terms, ordered by their time complexities (descending).

Classical Quantum
Algorithm Time Space Time Space
Voronoi cell [MV10] 2.00n 1.00n 2.00n 1.00n
Sieving [NV08] 0.42n 0.21n 0.42n 0.21n
Saturation [MV09] 0.52n 0.21n 0.52n 0.21n

Enum. [GNR10] O(nlogn) O(logn) O(nlogn) O(logn)
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Heuristic/Experimental results (n =~ 100)

Table: Complexities of SVP algorithms in logarithmic leading order
terms, ordered by their time complexities (descending).

Classical Quantum
Algorithm Time Space Time Space
Voronoi cell [MV10] 2.00n 1.00n 2.00n 1.00n
Sieving [LMP13] 0.42n 0.21n 0.32n 0.21n
Saturation [LMP13] 0.52n 0.21n 0.39n 0.21n

Enum. [GNR10] O(nlogn) O(logn) O(nlogn) O(logn)
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Conclusion

Results

o Faster sieving algorithms (exponent: —25%)

o Faster saturation algorithms (exponent: ~ —25%)
Open problems

e Improve enumeration algorithms?

Improve Voronoi cell algorithm?

Use other quantum algorithms?

Build a quantum computer?



TU
/e Questions
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