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• Quantum search: Θ(
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Applications
(Why do we care?)

• “Constructive cryptography”: Lattice-based cryptosystems
I Based on hard lattice problems (SVP, CVP)
I NTRU cryptosystem [HPS98]
I Fully Homomorphic Encryption [Gen09]
I Candidate for “Post-Quantum” cryptography

• “Destructive cryptography”: Cryptanalysis

I Attack knapsack-based cryptosystems [Sha82, LO85]
I Attack variants of RSA [Cop96]
I Attack DSA and ECDSA [NS02, NS03]
I Attack lattice-based cryptosystems [Ngu99, JJ00]

How (quantum-)hard are hard lattice problems such as SVP?
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Sieving

Invented in 2001 [AKS01]
Procedure:
1. Generate a long list V of random lattice vectors

2. Split V into two sets C (centers, cover) and R (rest):

I Set C = ∅ and R = ∅
I For each v ∈ V , find the closest c ∈ C

I If ‖v − c‖ is “large”, add v to C
I If ‖v − c‖ is “small”, add v − c to R

3. Set V = R and repeat until V contains a shortest vector
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Invented in the early ’80s [Poh81, Kan83, FP85]
Procedure:
1. Guess the nth coordinate (coefficient of basis vector bn)
2. Find a shortest vector, given the nth coordinate
3. Search for a shortest vector among all of these vectors

Recursive: Reduces SVPn (CVPn) to several instances of CVPn−1
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• Space: (polynomial)
• Classical Time: 2O(n log n) [Kan83]
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Table: Complexities of SVP algorithms in logarithmic leading order
terms, ordered by their time complexities (descending).

Classical Quantum
Algorithm Time Space Time Space

Enum. [Kan83] O(n log n) O(log n) O(n log n) O(log n)
Sieving [PS09] 2.65n 1.33n 2.65n 1.33n
Saturation [PS09] 2.47n 1.24n 2.47n 1.24n
Voronoi cell [MV10] 2.00n 1.00n 2.00n 1.00n
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Heuristic/Experimental results (n ≈ 100)

Table: Complexities of SVP algorithms in logarithmic leading order
terms, ordered by their time complexities (descending).

Classical Quantum
Algorithm Time Space Time Space

Voronoi cell [MV10] 2.00n 1.00n 2.00n 1.00n
Sieving [NV08] 0.42n 0.21n 0.42n 0.21n
Saturation [MV09] 0.52n 0.21n 0.52n 0.21n
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Heuristic/Experimental results (n ≈ 100)

Table: Complexities of SVP algorithms in logarithmic leading order
terms, ordered by their time complexities (descending).

Classical Quantum
Algorithm Time Space Time Space

Voronoi cell [MV10] 2.00n 1.00n 2.00n 1.00n
Sieving [LMP13] 0.42n 0.21n 0.32n 0.21n
Saturation [LMP13] 0.52n 0.21n 0.39n 0.21n
Enum. [GNR10] O(n log n) O(log n) O(n log n) O(log n)



Conclusion

Results
• Faster sieving algorithms (exponent: −25%)
• Faster saturation algorithms (exponent: ≈ −25%)

Open problems
• Improve enumeration algorithms?
• Improve Voronoi cell algorithm?
• Use other quantum algorithms?
• Build a quantum computer?



Questions
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