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Quantum Search
Classical form

Problem: Given a list L of size N, and a function f : L→ {0, 1}
such that there is exactly one element e ∈ L with f (e) = 1. Find
this element e.

• Classical search: Θ(N) time
• Quantum search: Θ(

√
N) time [Gro96]



Quantum Search
General form

Problem: Given a list L of size N, and a function f : L→ {0, 1}
such that there are c = O(1) elements e ∈ L with f (e) = 1. Find
one such element e.

• Classical search: Θ(N/c) time
• Quantum search: Θ(

√
N/c) time [Gro96]



Applications
(Why do we care?)

• “Constructive cryptography”: Lattice-based cryptosystems
I Based on hard lattice problems (SVP, CVP)
I NTRU cryptosystem [HPS98]
I Fully Homomorphic Encryption [Gen09]
I Candidate for post-quantum cryptography ("survivor")

• “Destructive cryptography”: Cryptanalysis

I Attack knapsack-based cryptosystems [Sha82, LO85]
I Attack RSA with Coppersmith’s method [Cop97]
I Attack DSA and ECDSA [NS02, NS03]
I Attack lattice-based cryptosystems [Ngu99, JJ00]

How (quantum-)hard are hard lattice problems such as SVP?
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Sieving

Studied since 2001 [AKS01, Reg04, NV08, . . ., ZPH13]
1. Generate a long list V of random lattice vectors

2. Split V into two sets C (centers, cover) and R (rest):

I Set C = ∅ and R = ∅
I For each v ∈ V , find the closest c ∈ C

I If ‖v − c‖ is “large”, add v to C
I If ‖v − c‖ is “small”, add v − c to R

3. Set V = R and repeat until V contains a shortest vector
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Complexity?
• Space: |V |, |C |, |R| ≤ 2αn for some α
• Classical Time:

≈ 2αn · 2αn = 22αn

• Quantum Time:

≈ 2αn ·
√
2αn = 2 3

2 αn

• Quantum speed-up: ≈ 25% in the exponent
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Studied since 2009 [MV10, PS09, Sch11, IKMT13]
1. Generate a long list V of random lattice vectors

2. “Reduce the vectors with each other”:

I Set C = ∅
I For each v ∈ V , find the closest vector c ∈ C

I If ‖v − c‖ < ‖v‖, set v ← v − c and find new closest c ∈ C
I If ‖v − c‖ ≥ ‖v‖, add v to C

3. Search C for a shortest vector
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Overview
Provable results (large n asymptotics)

Table: Complexities of SVP algorithms in logarithmic leading order terms:

Classical Quantum
Algorithm Time Space Time Space

Enum. [Kan83] O(n log n) O(log n) O(n log n) O(log n)
Sieving [PS09] 2.65n 1.33n 2.65n 1.33n
Saturation [PS09] 2.47n 1.24n 2.47n 1.24n
Voronoi cell [MV10] 2.00n 1.00n 2.00n 1.00n
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Classical Quantum
Algorithm Time Space Time Space

Enum. [Kan83] O(n log n) O(log n) O(n log n) O(log n)
Sieving [PS09] 2.65n 1.33n 2.65n 1.33n
Saturation [LMP13] 2.47n 1.24n 1.80n 1.29n
Voronoi cell [MV10] 2.00n 1.00n 2.00n 1.00n



Overview
Heuristic/Experimental results (n ≈ 100)

Table: Complexities of SVP algorithms in logarithmic leading order terms:

Classical Quantum
Algorithm Time Space Time Space

Enum. [GNR10] O(n log n) O(log n) O(n log n) O(log n)
Sieving [NV08] 0.42n 0.21n 0.42n 0.21n
Saturation [MV10] 0.52n 0.21n 0.52n 0.21n
Voronoi cell [MV10] 2.00n 1.00n 2.00n 1.00n



Overview
Heuristic/Experimental results (n ≈ 100)

Table: Complexities of SVP algorithms in logarithmic leading order terms:

Classical Quantum
Algorithm Time Space Time Space

Enum. [GNR10] O(n log n) O(log n) O(n log n) O(log n)
Sieving [LMP13] 0.42n 0.21n 0.32n 0.21n
Saturation [LMP13] 0.52n 0.21n 0.39n 0.21n
Voronoi cell [MV10] 2.00n 1.00n 2.00n 1.00n



Conclusion

Using Grover search speeds up some SVP algorithms
• Faster sieving algorithms (exponent: ≈ −25%)
• Faster saturation algorithms (exponent: ≈ −25%)

Open quantum problems
• Other speed-ups for these algorithms?
• Speed-ups for other SVP algorithms? (see part 2)
• Speed-ups for lattice basis reduction?
• Speed-ups for lattices with more structure?



Questions
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