

Quantum Lattice Cryptanalysis Part 1: Sieving and Saturation

Thijs Laarhoven, Michele Mosca, Joop van de Pol

mail@thijs.com
http://www.thijs.com/

Schloss Dagstuhl, Wadern, Germany (September 11, 2013)

Solving the Shortest Vector Problem in Lattices Faster Using Quantum Search

Thijs Laarhoven, Michele Mosca, Joop van de Pol

mail@thijs.com
http://www.thijs.com/

Schloss Dagstuhl, Wadern, Germany (September 11, 2013)

Outline

Introduction

Lattices

Quantum Search

Applications

SVP Algorithms

Sieving

Saturation

Overview

Conclusion

TU/e

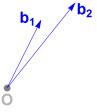
Lattices

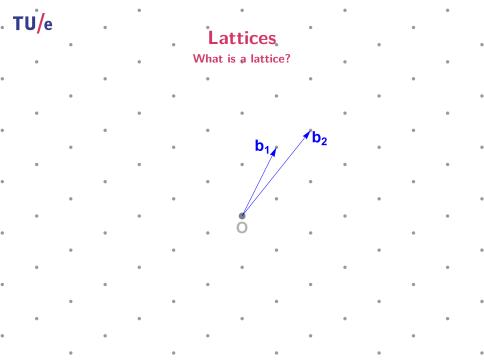
What is a lattice?

TU/e

Lattices

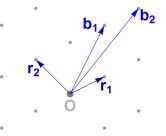
What is a lattice?



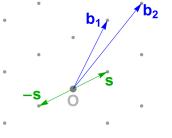


. **TU**/e

Lattices,
Lattice Basis Reduction



. TU'/e Lattices Shortest Vector_•Problem (SVP) Lattices.
Shortest Vector, Problem (SVP)



. TǗ/e Lattices Closest Vector Problem (CVP) . TǗ/e Lattices Closest Vector Problem (CVP)

Quantum Search

Classical form

Problem: Given a list L of size N, and a function $f:L \to \{0,1\}$ such that there is exactly one element $e \in L$ with f(e) = 1. Find this element e.

- Classical search: $\Theta(N)$ time
- Quantum search: $\Theta(\sqrt{N})$ time [Gro96] •

Quantum Search General form

Problem: Given a list L of size N, and a function $f:L\to\{0,1\}$ such that there are c=O(1) elements $e\in L$ with f(e)=1. Find one such element e.

- Classical search: $\Theta(N/c)$ time
- Quantum search: $\Theta(\sqrt{N/c})$ time [Gro96]

Applications

(Why do we care?)

- "Constructive cryptography": Lattice-based cryptosystems
 - ▶ Based on hard lattice problems (SVP, CVP)
 - NTRU cryptosystem [HPS98]
 - ► Fully Homomorphic Encryption [Gen09]
 - Candidate for post-quantum cryptography ("survivor")

Applications

(Why do we care?)

- "Constructive cryptography": Lattice-based cryptosystems
 - ▶ Based on hard lattice problems (SVP, CVP)
 - ► NTRU cryptosystem [HPS98]
 - ► Fully Homomorphic Encryption [Gen09]
 - Candidate for post-quantum cryptography ("survivor")
- "Destructive cryptography": Cryptanalysis
 - Attack knapsack-based cryptosystems [Sha82, LO85]
 - ► Attack RSA with Coppersmith's method [Cop97]
 - ► Attack DSA and ECDSA [NS02, NS03]
 - Attack lattice-based cryptosystems [Ngu99, JJ00]

Applications

(Why do we care?)

- "Constructive cryptography": Lattice-based cryptosystems
 - ▶ Based on hard lattice problems (SVP, CVP)
 - ► NTRU cryptosystem [HPS98]
 - ► Fully Homomorphic Encryption [Gen09]
 - Candidate for post-quantum cryptography ("survivor")
- "Destructive cryptography": Cryptanalysis
 - Attack knapsack-based cryptosystems [Sha82, LO85]
 - ► Attack RSA with Coppersmith's method [Cop97]
 - ► Attack DSA and ECDSA [NS02, NS03]
 - Attack lattice-based cryptosystems [Ngu99, JJ00]

How (quantum-)hard are hard lattice problems such as SVP?

TU/e

Sieving.

Studied since 2001 [AKS01, Reg04, NV08, ..., ZPH13]

1. Generate a long list V of random lattice vectors

Sieving

Studied since 2001 [AKS01, Reg04, NV08, ..., ZPH13]

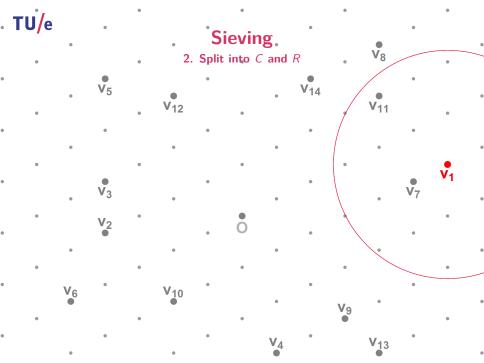
- 1. Generate a long list V of random lattice vectors
- 2. Split V into two sets C (centers, cover) and R (rest):
 - ▶ Set $C = \emptyset$ and $R = \emptyset$
 - ▶ For each $v \in V$, find the closest $c \in C$
 - ▶ If ||v c|| is "large", add v to C
 - ▶ If ||v c|| is "small", add v c to R

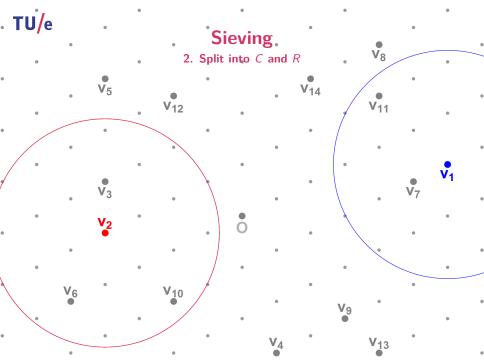
Sieving

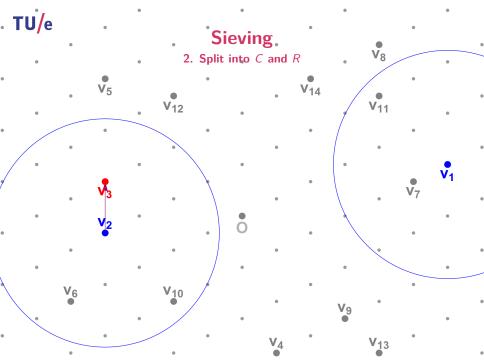
Studied since 2001 [AKS01, Reg04, NV08, ..., ZPH13]

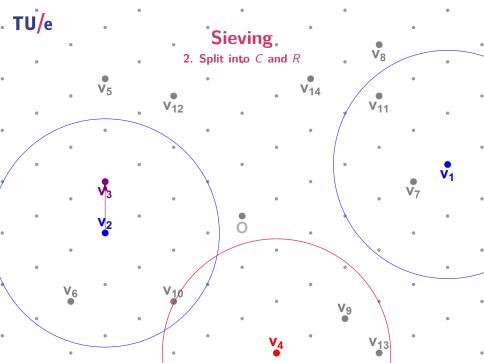
- 1. Generate a long list V of random lattice vectors
- 2. Split V into two sets C (centers, cover) and R (rest):
 - ▶ Set $C = \emptyset$ and $R = \emptyset$
 - ▶ For each $v \in V$, find the closest $c \in C$
 - ▶ If ||v c|| is "large", add v to C
 - ▶ If ||v c|| is "small", add v c to R
- 3. Set V = R and repeat until V contains a shortest vector

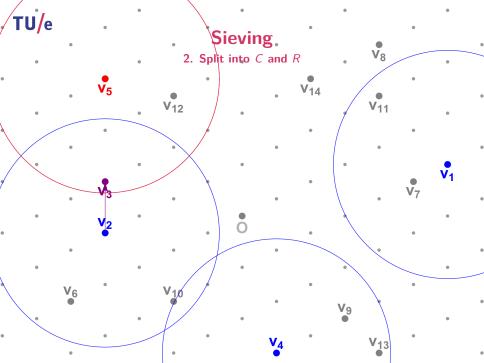
TU/e Sieving.
1. Generate random lattice vectors.

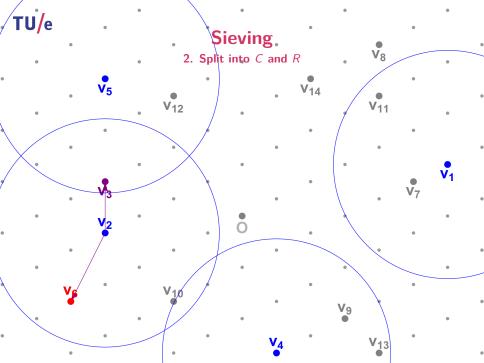


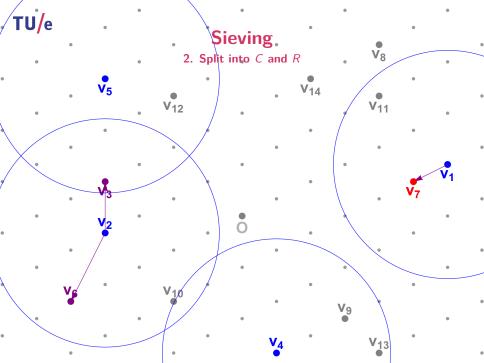


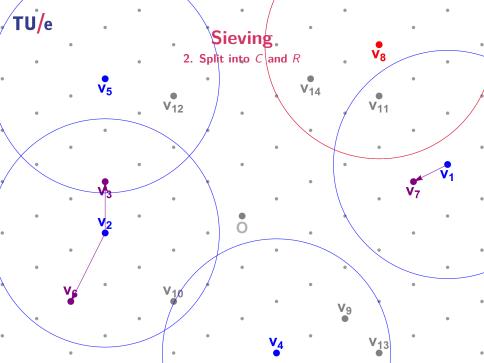


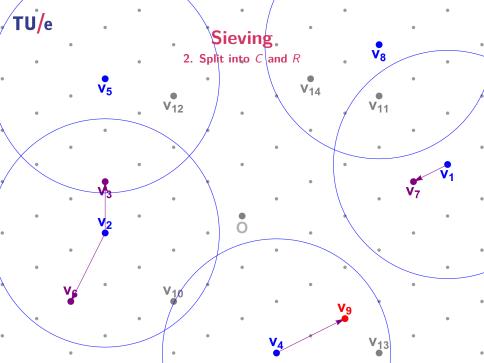


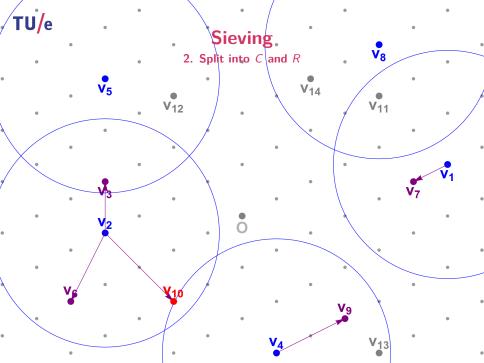


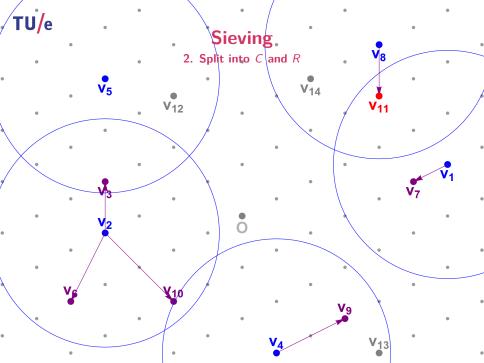


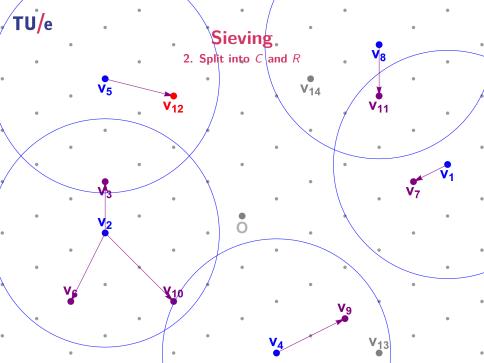


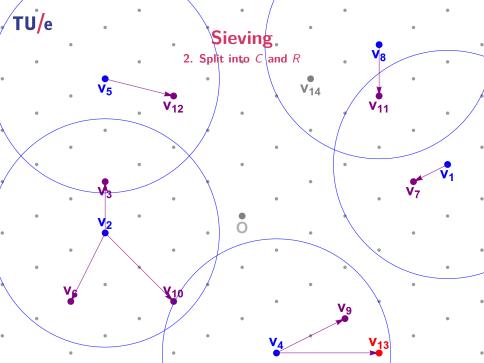


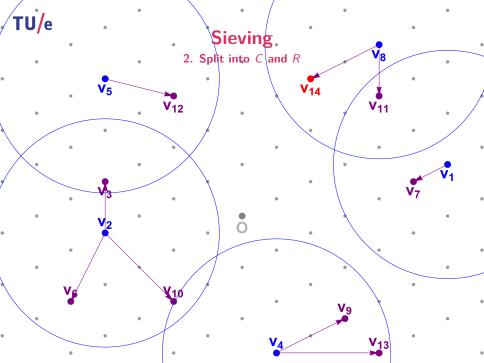


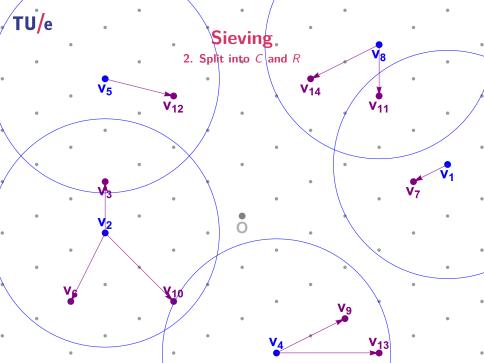


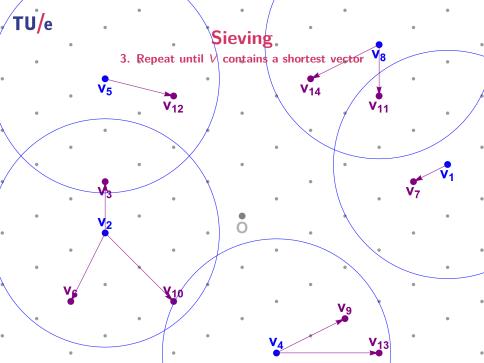


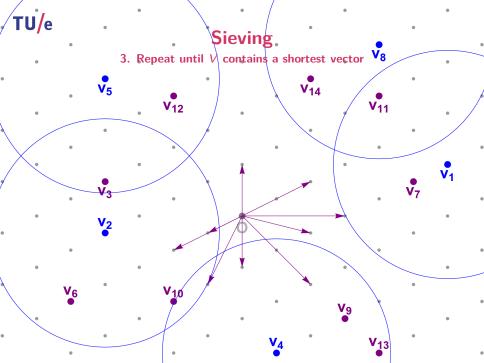












- 1. Generate a long list V of random lattice vectors
- 2. Split V into two sets C (centers, cover) and R (rest):
 - ▶ Set $C = \emptyset$ and $R = \emptyset$
 - ▶ For each $v \in V$, find the closest $c \in C$
 - ▶ If ||v c|| is "large", add v to C
 - ▶ If ||v c|| is "small", add v c to R
- 3. Set V = R and repeat until V contains a shortest vector

- 1. Generate a long list V of random lattice vectors
- 2. Split V into two sets C (centers, cover) and R (rest):
 - ▶ Set $C = \emptyset$ and $R = \emptyset$
 - ▶ For each $v \in V$, find the closest $c \in C$
 - ▶ If ||v c|| is "large", add v to C
 - ▶ If ||v c|| is "small", add v c to R
- 3. Set V = R and repeat until V contains a shortest vector Complexity?

- 1. Generate a long list V of random lattice vectors
- 2. Split V into two sets C (centers, cover) and R (rest):
 - ▶ Set $C = \emptyset$ and $R = \emptyset$
 - ▶ For each $v \in V$, find the closest $c \in C$
 - ▶ If ||v c|| is "large", add v to C
 - ▶ If ||v c|| is "small", add v c to R
- 3. Set V = R and repeat until V contains a shortest vector Complexity?
 - Space: $|V|, |C|, |R| \le 2^{\alpha n}$ for some α

- 1. Generate a long list V of random lattice vectors
- 2. Split V into two sets C (centers, cover) and R (rest):
 - ▶ Set $C = \emptyset$ and $R = \emptyset$
 - ▶ For each $v \in V$, find the closest $c \in C$
 - ▶ If ||v c|| is "large", add v to C
 - ▶ If ||v c|| is "small", add v c to R
- 3. Set V = R and repeat until V contains a shortest vector Complexity?
 - Space: $|V|, |C|, |R| \le 2^{\alpha n}$ for some α
 - Classical Time:

- 1. Generate a long list V of random lattice vectors
- 2. Split V into two sets C (centers, cover) and R (rest):
 - ▶ Set $C = \emptyset$ and $R = \emptyset$
 - ▶ For each $v \in V$, find the closest $c \in C$
 - ▶ If ||v c|| is "large", add v to C
 - ▶ If ||v c|| is "small", add v c to R
- 3. Set V = R and repeat until V contains a shortest vector Complexity?
 - Space: $|V|, |C|, |R| \le 2^{\alpha n}$ for some α
 - Classical Time: $\approx 2^{\alpha n} \cdot 2^{\alpha n} = 2^{2\alpha n}$

- 1. Generate a long list V of random lattice vectors
- 2. Split V into two sets C (centers, cover) and R (rest):
 - ▶ Set $C = \emptyset$ and $R = \emptyset$
 - ▶ For each $v \in V$, find the closest $c \in C$
 - ▶ If ||v c|| is "large", add v to C
 - ▶ If ||v c|| is "small", add v c to R
- 3. Set V = R and repeat until V contains a shortest vector Complexity?
 - Space: $|V|, |C|, |R| \le 2^{\alpha n}$ for some α
 - Classical Time: $\approx 2^{\alpha n} \cdot 2^{\alpha n} = 2^{2\alpha n}$
 - Quantum Time:

- 1. Generate a long list V of random lattice vectors
- 2. Split V into two sets C (centers, cover) and R (rest):
 - ▶ Set $C = \emptyset$ and $R = \emptyset$
 - ▶ For each $v \in V$, find the closest $c \in C$
 - ▶ If ||v c|| is "large", add v to C
 - ▶ If ||v c|| is "small", add v c to R
- 3. Set V = R and repeat until V contains a shortest vector Complexity?
 - Space: $|V|, |C|, |R| \le 2^{\alpha n}$ for some α
 - Classical Time: $\approx 2^{\alpha n} \cdot 2^{\alpha n} = 2^{2\alpha n}$
 - Quantum Time: $\approx 2^{\alpha n} \cdot \sqrt{2^{\alpha n}} = 2^{\frac{3}{2}\alpha n}$

- 1. Generate a long list V of random lattice vectors
- 2. Split V into two sets C (centers, cover) and R (rest):
 - ▶ Set $C = \emptyset$ and $R = \emptyset$
 - ▶ For each $v \in V$, find the closest $c \in C$
 - ▶ If ||v c|| is "large", add v to C
 - ▶ If ||v c|| is "small", add v c to R
- 3. Set V = R and repeat until V contains a shortest vector Complexity?
 - Space: $|V|, |C|, |R| \le 2^{\alpha n}$ for some α
 - Classical Time: $\approx 2^{\alpha n} \cdot 2^{\alpha n} = 2^{2\alpha n}$
 - Quantum Time: $\approx 2^{\alpha n} \cdot \sqrt{2^{\alpha n}} = 2^{\frac{3}{2}\alpha n}$
 - Quantum speed-up: pprox 25% in the exponent

Saturation

Studied since 2009 [MV10, PS09, Sch11, IKMT13]

1. Generate a long list V of random lattice vectors

Saturation

Studied since 2009 [MV10, PS09, Sch11, IKMT13]

- 1. Generate a long list V of random lattice vectors
- 2. "Reduce the vectors with each other":
 - Set *C* = ∅
 - ▶ For each $v \in V$, find the closest vector $c \in C$
 - ▶ If ||v c|| < ||v||, set $v \leftarrow v c$ and find new closest $c \in C$
 - If $||v-c|| \ge ||v||$, add v to C

Saturation

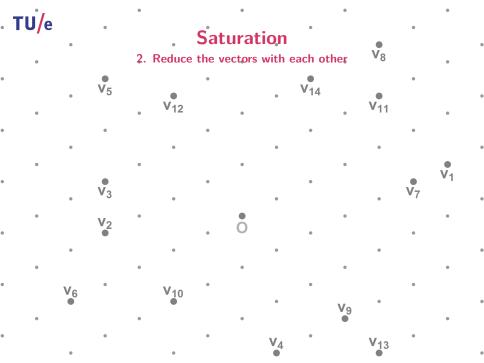
Studied since 2009 [MV10, PS09, Sch11, IKMT13]

- 1. Generate a long list V of random lattice vectors
- 2. "Reduce the vectors with each other":
 - Set *C* = ∅
 - ▶ For each $v \in V$, find the closest vector $c \in C$
 - ▶ If ||v c|| < ||v||, set $v \leftarrow v c$ and find new closest $c \in C$
 - If $||v-c|| \ge ||v||$, add v to C
- 3. Search C for a shortest vector

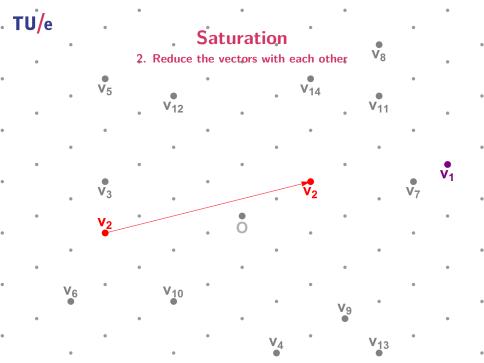
. TU'/e

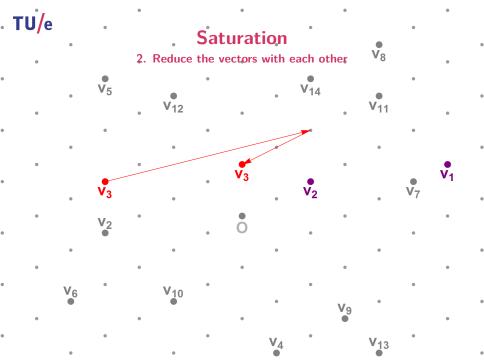
Saturation

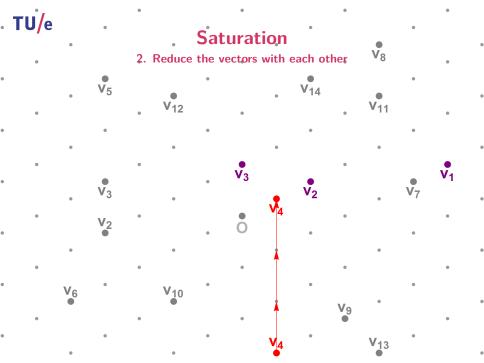
. 1. Generate random lattice vectors .

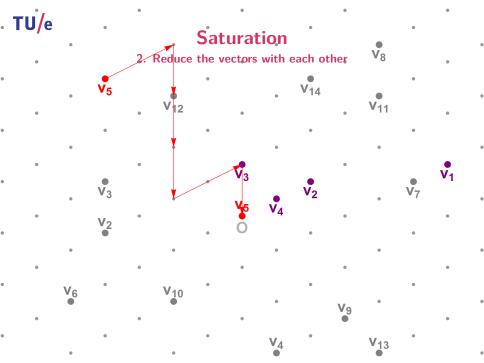


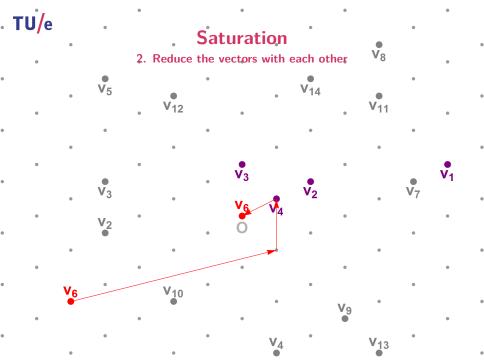


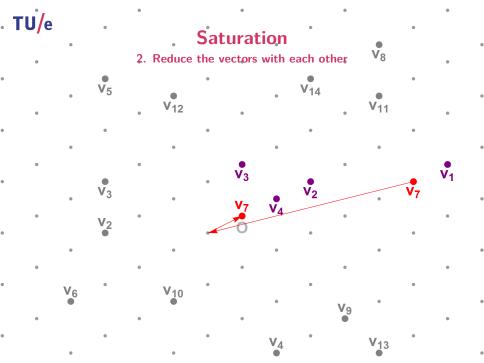




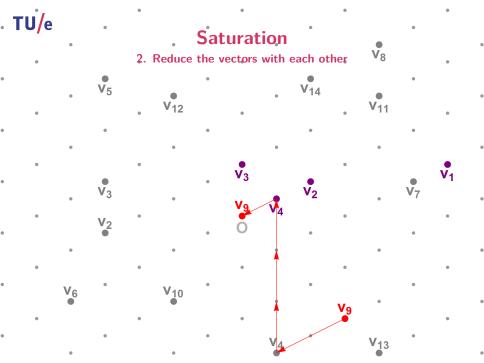


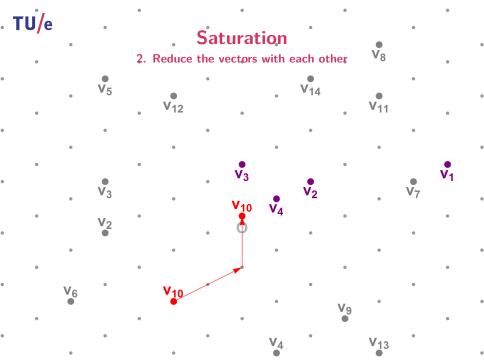






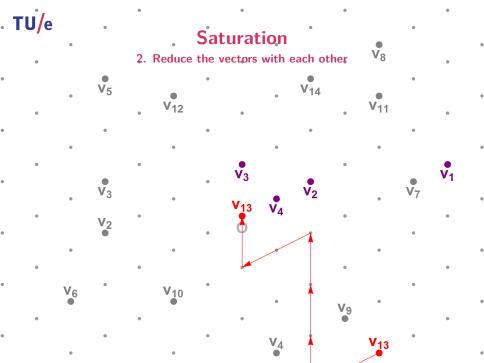
. **TU**/e **Saturation** 2. Reduce the vectors with each other V₅ V₆

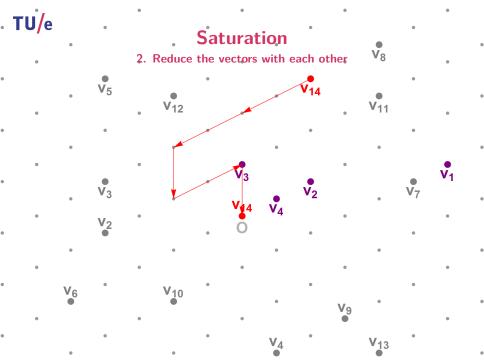


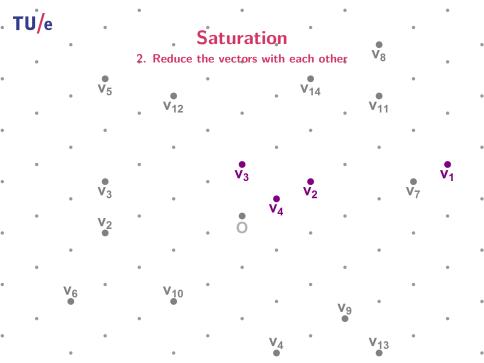


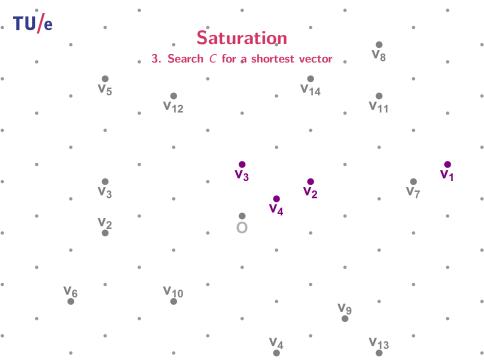
. TUŻe Saturation 2. Reduce the vectors with each other V₅ V₆

. **TU**/e **Saturation** 2. Reduce the vectors with each other V₆









Studied since 2009 [MV10, PS09, Sch11, IKMT13]

- 1. Generate a long list V of random lattice vectors
- 2. "Reduce the vectors with each other":
 - ▶ Set *C* = ∅
 - ▶ For each $v \in V$, find the closest vector $c \in C$
 - ▶ If ||v c|| < ||v||, set $v \leftarrow v c$ and find new closest $c \in C$
 - ▶ If $||v c|| \ge ||v||$, add v to C
- 3. Find a shortest vector among the reduced vectors

Studied since 2009 [MV10, PS09, Sch11, IKMT13]

- 1. Generate a long list V of random lattice vectors
- 2. "Reduce the vectors with each other":
 - ▶ Set *C* = ∅
 - ▶ For each $v \in V$, find the closest vector $c \in C$
 - ▶ If ||v c|| < ||v||, set $v \leftarrow v c$ and find new closest $c \in C$
 - ▶ If $||v c|| \ge ||v||$, add v to C
- 3. Find a shortest vector among the reduced vectors

Studied since 2009 [MV10, PS09, Sch11, IKMT13]

- 1. Generate a long list V of random lattice vectors
- 2. "Reduce the vectors with each other":
 - ▶ Set *C* = ∅
 - ▶ For each $v \in V$, find the closest vector $c \in C$
 - ▶ If ||v c|| < ||v||, set $v \leftarrow v c$ and find new closest $c \in C$
 - ▶ If $||v c|| \ge ||v||$, add v to C
- 3. Find a shortest vector among the reduced vectors

Complexity?

• Space: $|V|, |C|, |R| \le 2^{\alpha n}$ for some α

Studied since 2009 [MV10, PS09, Sch11, IKMT13]

- 1. Generate a long list V of random lattice vectors
- 2. "Reduce the vectors with each other":
 - ▶ Set *C* = ∅
 - ▶ For each $v \in V$, find the closest vector $c \in C$
 - ▶ If ||v c|| < ||v||, set $v \leftarrow v c$ and find new closest $c \in C$
 - ▶ If $||v c|| \ge ||v||$, add v to C
- 3. Find a shortest vector among the reduced vectors

- Space: $|V|, |C|, |R| \le 2^{\alpha n}$ for some α
- Classical Time:

Studied since 2009 [MV10, PS09, Sch11, IKMT13]

- 1. Generate a long list V of random lattice vectors
- 2. "Reduce the vectors with each other":
 - ▶ Set *C* = ∅
 - ▶ For each $v \in V$, find the closest vector $c \in C$
 - ▶ If ||v c|| < ||v||, set $v \leftarrow v c$ and find new closest $c \in C$
 - ▶ If $||v c|| \ge ||v||$, add v to C
- 3. Find a shortest vector among the reduced vectors

- Space: $|V|, |C|, |R| \le 2^{\alpha n}$ for some α
- Classical Time: $\approx 2^{\alpha n} \cdot 2^{\alpha n} = 2^{2\alpha n}$

Studied since 2009 [MV10, PS09, Sch11, IKMT13]

- 1. Generate a long list V of random lattice vectors
- 2. "Reduce the vectors with each other":
 - ▶ Set *C* = ∅
 - ▶ For each $v \in V$, find the closest vector $c \in C$
 - ▶ If ||v c|| < ||v||, set $v \leftarrow v c$ and find new closest $c \in C$
 - ▶ If $||v c|| \ge ||v||$, add v to C
- 3. Find a shortest vector among the reduced vectors

- Space: $|V|, |C|, |R| \le 2^{\alpha n}$ for some α
- Classical Time: $\approx 2^{\alpha n} \cdot 2^{\alpha n} = 2^{2\alpha n}$
- Quantum Time:

Studied since 2009 [MV10, PS09, Sch11, IKMT13]

- 1. Generate a long list V of random lattice vectors
- 2. "Reduce the vectors with each other":
 - ▶ Set *C* = ∅
 - ▶ For each $v \in V$, find the closest vector $c \in C$
 - ▶ If ||v c|| < ||v||, set $v \leftarrow v c$ and find new closest $c \in C$
 - ▶ If $||v c|| \ge ||v||$, add v to C
- 3. Find a shortest vector among the reduced vectors

- Space: $|V|, |C|, |R| \le 2^{\alpha n}$ for some α
- Classical Time: $\approx 2^{\alpha n} \cdot 2^{\alpha n} = 2^{2\alpha n}$
- Quantum Time: $\approx 2^{\alpha n} \cdot \sqrt{2^{\alpha n}} = 2^{\frac{3}{2}\alpha n}$

Studied since 2009 [MV10, PS09, Sch11, IKMT13]

- 1. Generate a long list V of random lattice vectors
- 2. "Reduce the vectors with each other":
 - ▶ Set *C* = ∅
 - ▶ For each $v \in V$, find the closest vector $c \in C$
 - ▶ If ||v c|| < ||v||, set $v \leftarrow v c$ and find new closest $c \in C$
 - ▶ If $||v c|| \ge ||v||$, add v to C
- 3. Find a shortest vector among the reduced vectors

- Space: $|V|, |C|, |R| \le 2^{\alpha n}$ for some α
- Classical Time: $\approx 2^{\alpha n} \cdot 2^{\alpha n} = 2^{2\alpha n}$
- Quantum Time: $\approx 2^{\alpha n} \cdot \sqrt{2^{\alpha n}} = 2^{\frac{3}{2}\alpha n}$
- \bullet Quantum speed-up: $\approx 25\%$ in the exponent $\, \bullet \,$

Provable results (large *n* **asymptotics)**

•	۰	۰	Classical	Quantum	
	Algorithm	° Time	Space	Time	Space
	Enum. [Kan83]	$O(n \log n)$	$O(\log n)$	$O(n \log n)$	$O(\log n)$
	Sieving [PS09]	- 2.65 <i>n</i>	1.33 <i>n</i>	2.65 <i>n</i>	• 1.33 <i>n</i>
	Saturation [PS09]	2.47 <i>n</i>	1.24 <i>n</i>	2.47 <i>n</i>	1.24 <i>n</i>
•	Voronoi cell [MV10]	2.00 <i>n</i>	1.00 <i>n</i>	• 2.00 <i>n</i>	1.00 <i>n</i>

Provable results (large *n* asymptotics)

•	٠	Classical	0	Quantum
Algorithm	Time	Space	Time	Space
Enum. [Kan83]	$O(n \log n)$	$O(\log n)$	$O(n \log n)$	$O(\log n)$
Sieving [PS09]	∘2.65 <i>n</i>	1.33 <i>n</i>	2.65 <i>n</i>	• 1.33 <i>n</i>
Saturation [LMP13]	2.47 <i>n</i>	∘1.24 <i>n</i>	1.80n	1.29n
Voronoi cell [MV10]	2.00 <i>n</i>	1.00 <i>n</i>	• 2.00 <i>n</i>	1.00 <i>n</i>

Heuristic/Experimental results ($n \approx 100$)

•	۰	•	Classical	Quantum	
	Algorithm	• Time	Space	Time	Space
	Enum. [GNR10]	$O(n \log n)$	$O(\log n)$	$O(n \log n)$	$O(\log n)$
	Sieving [NV08]	∘ 0.42 <i>n</i>	0.21n	0.42 <i>n</i>	• 0.21 <i>n</i>
	Saturation [MV10]	0.52 <i>n</i>	0.21 <i>n</i>	0.52 <i>n</i>	0.21n
•	Voronoi cell [MV10]	2.00 <i>n</i>	1.00 <i>n</i>	• 2.00 <i>n</i>	1.00 <i>n</i>

Heuristic/Experimental results ($n \approx 100$)

	[®] Classical		Quantum	
Algorithm	Time	Space	Time	Space
Enum. [GNR10]	$O(n \log n)$	$O(\log n)$	$O(n \log n)$	$O(\log n)$
Sieving [LMP13]	-0.42 <i>n</i>	0.21 <i>n</i>	0.32n	• 0.21n
Saturation [LMP13]	0.52 <i>n</i>	0.21 <i>n</i>	0.39n	0.21n
Voronoi cell [MV10]	2.00 <i>n</i>	1.00 <i>n</i>	• 2.00 <i>n</i>	1.00 <i>n</i>

Conclusion

Using Grover search speeds up some SVP algorithms

- Faster sieving algorithms (exponent: $\approx -25\%$)
- Faster saturation algorithms (exponent: $\approx -25\%$)

Open quantum problems

- Other speed-ups for these algorithms?
- Speed-ups for other SVP algorithms? (see part 2)
- Speed-ups for lattice basis reduction?
- Speed-ups for lattices with more structure?

TU/e

