
Department of Mathematics and Computer Science

Collusion-resistant
traitor tracing schemes

by

Thijs Martinus Maria Laarhoven

A thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Science

in

Industrial and Applied Mathematics

Supervisors:

dr. Benne de Weger (TU/e)

dr. Jeroen Doumen (Irdeto)

June 2011

ii

Acknowledgements

This report is the result of many months of hard, but also very enjoyable work at Irdeto and at
the TU/e. Before continuing with the content of this report I would like to take a moment to
thank all those without whom I could not have written this report.

First of all, I am very grateful to Benne de Weger and Jeroen Doumen (and the TU/e and
Irdeto) for making this project possible, and for guiding me throughout the project, both from
the TU/e and from Irdeto. If I had any questions or problems, they were always there to help
and guide me. I would also like to thank both for letting me choose the further directions I
wanted to take with the project. This way I could investigate those things which I thought were
most interesting at the time, even though sometimes this led to nothing.

Secondly, I would like to thank Boris Skoric and Peter Roelse for helping me in many ways.
Their door was also always open for me, and I have had many useful discussions with both.
In this sense I had the great benefit of having two supervisors both at the TU/e (Benne and
Boris) and at Irdeto (Jeroen and Peter). Thus if one of them was not available (business trip,
appointments, teaching), I could always go see the other, allowing me to address any problems I
had quickly, both at the TU/e and at Irdeto.

For discussions on the topic, I would further like to thank the members of the CREST-group at
the TU/e. The weekly meetings on Friday were always interesting and provided me with a lot of
useful insights, not to mention that I also very much enjoyed the weekly meetings.

Last but not least, I would like to thank my family, my fellow students at the TU/e, and the
employees of Irdeto in Eindhoven for creating such a good atmosphere at home, at the TU/e
and at Irdeto. I really enjoyed working on the project and writing this report, thanks to this
good atmosphere, and I hope the reader will enjoy reading the report as well.

Thijs Laarhoven,

June 2011

iii

iv

Contents

1 Introduction 1

1.1 Outline . 2

2 Terminology 5

2.1 Fingerprinting codes . 5

2.1.1 Coalitions and forgeries . 6

2.1.2 Attack models . 6

2.1.3 Pirate strategies . 7

2.1.4 Example . 7

2.2 Fingerprinting schemes . 8

2.2.1 Deterministic versus probabilistic . 8

2.2.2 Static versus dynamic . 9

2.3 Notation . 12

3 Preliminaries 13

3.1 Coding theory . 13

3.2 Probability theory . 14

3.3 Graph theory . 15

3.4 Miscellaneous . 16

I Literature survey 17

4 Deterministic static schemes 19

4.1 Introduction . 19

4.2 Frameproof codes . 23

4.2.1 Constructions from linear error-correcting codes 28

4.2.2 Concatenating codes . 30

4.3 Secure frameproof codes . 31

4.4 IPP codes . 34

4.5 Summary . 35

v

5 Probabilistic static schemes 37

5.1 Introduction . 37

5.2 Lower bounds . 38

5.2.1 Linear in c . 38

5.2.2 Quadratic in c . 39

5.2.3 Finding the final constant . 40

5.2.4 Non-binary alphabets . 40

5.3 The Boneh-Shaw scheme . 41

5.3.1 Introduction . 41

5.3.2 The cubic Boneh-Shaw scheme . 42

5.3.3 The quartic Boneh-Shaw scheme . 43

5.3.4 Limitations . 45

5.3.5 Summary . 45

5.4 The Tardos scheme . 46

5.4.1 Introduction . 46

5.4.2 The original Tardos scheme . 51

5.4.3 Improvements . 59

5.4.4 Summary . 60

5.5 Summary . 61

6 Deterministic dynamic schemes 63

6.1 Introduction . 63

6.1.1 Graph notation . 64

6.1.2 Example . 66

6.2 Lower bounds . 67

6.3 The Fiat-Tassa scheme . 68

6.3.1 Introduction . 68

6.3.2 The Fiat-Tassa scheme . 71

6.3.3 Summary . 72

6.4 The Berkman-Parnas-Sgall schemes . 75

6.4.1 Introduction . 75

6.4.2 The degree algorithm . 75

6.4.3 The clique algorithm . 80

6.4.4 The optimal algorithm . 84

6.4.5 Summary . 84

6.5 Summary . 84

7 Probabilistic dynamic schemes 87

7.1 Introduction . 87

7.2 The Tassa scheme . 87

7.3 Summary . 88

vi

II The Tardos Quadrilogy 89

8 The optimal Tardos scheme 91

8.1 Introduction . 91

8.2 Construction . 91

8.2.1 The Tardos fingerprinting scheme . 92

8.2.2 Results for the asymmetric Tardos scheme 92

8.2.3 Results for the symmetric Tardos scheme 94

8.2.4 Integral codelengths . 95

8.3 Soundness . 96

8.4 Completeness . 97

8.5 Optimization . 101

8.6 Asymptotics . 102

8.7 Summary . 105

9 The dynamic Tardos scheme 107

9.1 Introduction . 107

9.2 Construction . 107

9.3 Soundness . 110

9.4 Special completeness . 111

9.5 Optimization . 111

9.6 Discussion . 112

9.7 Variant . 115

9.8 Summary . 116

10 The universal Tardos scheme 117

10.1 Introduction . 117

10.2 Construction . 118

10.3 Results . 120

10.4 Discussion . 123

10.5 Summary . 126

11 The staircase Tardos scheme 129

11.1 Introduction . 129

11.2 Construction . 131

11.3 Results . 132

11.4 Summary . 132

12 Publications 135

12.1 Paper: Optimal symmetric Tardos traitor tracing codes 135

12.2 Paper: Dynamic Tardos traitor tracing . 135

12.3 Irdeto Patent . 135

vii

13 Conclusion 137

13.1 Comparison . 137

13.2 Summary . 137

13.3 Future work . 138

13.3.1 The Tardos scheme: Discrete distribution functions 139

13.3.2 The Tardos scheme: Bigger alphabets . 140

13.3.3 Rate of c-secure frameproof codes . 140

13.3.4 Deterministic dynamic schemes for known coalition sizes 140

13.3.5 Probabilistic dynamic schemes: Lower bounds 141

13.3.6 Other schemes . 141

13.3.7 Watermarking . 141

A Optimal symmetric Tardos traitor tracing codes 143

Bibliography 165

viii

Chapter 1

Introduction

These days many digital products, such as videos and software, are produced and sold. Like
most products, these digital products are copyrighted, and distributors demand that people
who want to use these products should buy them from authorized resellers. However, with
the technology available nowadays it is easy for malicious customers (pirates or traitors) to
produce identical copies of their copy of the digital data, e.g. by copying DVDs, and distribute
these copies among others. This then allows people who did not pay for the product to use it
anyway, and it allows pirates to make money from this piracy. As an example, one can think
of movies being uploaded to YouTube, software being distributed over the internet through
torrents, or pirates publishing data needed for getting access to pay-TV channels. An obvious
solution to this problem is to add unique watermarks or fingerprints to each copy, so that if
a pirate distributes his watermarked copy and the distributor detects this illegal copy online,
the copyright owners can see that the copy belongs to that specific customer, and take steps
against that person.

w w w w w w w

Alice 0 1 1 1 0 0 1 1 1 0 1 1 0 1 0 0 . . .
Bob 0 1 1 1 0 1 0 1 1 0 1 1 1 1 1 0 . . .
Charlie 0 1 0 1 0 1 0 1 1 0 0 1 1 0 1 0 . . .
Dave 0 1 1 1 0 0 0 1 1 0 1 1 0 0 0 0 . . .
Eve 0 1 0 1 0 1 0 1 1 0 1 1 1 0 0 0 . . .

Forgery 0 1 0 1 0 1 0 1 1 0 1 1 1 0 0 0 . . .

Table 1.1: Watermarked data for five users, and an illegally published copy of the data. Columns marked
with a ”w” correspond to positions of the watermark, while the rest of the data is the same for every
user. Since the watermark of the published copy matches the watermark of Eve, the distributor can easily
establish that Eve must be the one having distributed her copy.

However, this is not the end of the story. Assuming that the actual digital data of the products
the people receive are identical, the only differences between two fingerprinted copies are
differences in their fingerprints. So if changing the fingerprint does not render the product
unusable, a coalition (or collusion) of multiple pirates (colluders) can compare their differently
fingerprinted products and detect positions where their products differ, which must thus be part
of the fingerprints. So instead of distributing one of their copies, which would implicate one of
them, a coalition can create a new copy with a different fingerprint. This new copy then has
the same digital data, but a fingerprint that could be a combination of the fingerprints of the
colluders. Then tracing guilty users suddenly becomes a non-trivial problem.

1

w w w w w w w

Alice 0 1 1 1 0 0 1 1 1 0 1 1 0 1 0 0 . . .
Bob 0 1 1 1 0 1 0 1 1 0 1 1 1 1 1 0 . . .
Charlie 0 1 0 1 0 1 0 1 1 0 0 1 1 0 1 0 . . .
Dave 0 1 1 1 0 0 0 1 1 0 1 1 0 0 0 0 . . .
Eve 0 1 0 1 0 1 0 1 1 0 1 1 1 0 0 0 . . .

Forgery 0 1 1 1 0 0 0 1 1 0 1 1 0 1 0 0 . . .

Table 1.2: The same watermarked data for the same five users, but with a different forged copy of the
data. Since the watermark of the forgery does not match the watermark of any of the users, the distributor
cannot easily establish who colluded to create this forged copy. In this case Bob, Dave and Eve colluded to
form the forged copy, but one can check that Alice and Charlie (who are innocent) together could also
have created the forgery.

The reason why this problem with colluders is hard to solve can be seen from the incompatible
requirements on the fingerprints. On the one hand the distributor wants to be able to distinguish
between different users effectively, so the fingerprints should not be too similar to eachother. This
means that different fingerprints assigned to different users should also contain many differences.
But on the other hand, if the fingerprints assigned to the pirates are very different, then by
comparing their copies these colluders can detect and edit a big part of the fingerprints. So
for that reason we would rather want pirates to have similar fingerprints with many identical
symbols. This gives a contradiction, as fingerprints cannot be both very different and very
similar.

Fortunately, there are mathematicians who investigated this problem and came up with so-called
fingerprinting schemes to solve this problem. Using fingerprinting codes and an appropriate
accusation algorithm, it is possible to identify the traitors, even if the fingerprint discovered in
the illegally redistributed data does not match any of the colluders’ fingerprints.

1.1 Outline

The outline of the report is as follows. First, in Chapter 2, we introduce some terminology
related to the problem sketched above, and try to formulate the problem in a clear, mathematical
way. In Chapter 3 we then summarize some results from several areas of mathematics which
appear when trying to solve this problem. Then in Part I, which contains Chapters 4, 5, 6 and
7, we thoroughly investigate several schemes from literature. The four chapters in this part
correspond to the four main models described in Chapter 2. Part I is roughly based on work
done in the first half of the project.

Next, in Part II, containing Chapters 8, 9, 10 and 11, we present some new results, which improve
upon earlier results found in literature. Basically there are three results which we discuss here:
(i) combining the Blayer-Tassa analysis of the Tardos scheme with the analysis done by Skoric et
al. (Chapter 8); (ii) using the Tardos scheme (with the improvements from (i)) in the dynamic
model, such that with roughly the same codelength as the static Tardos scheme we can catch
all pirates (Chapter 9); and (iii) improving upon the result described in (ii) by removing the
dependency on c, such that we obtain a fully dynamic Tardos scheme (Chapters 10 and 11).
The final result (iii) drastically improves upon earlier results from Tassa [Tas05], by achieving a
codelength which is approximately the square root of the codelength of Tassa.

After that, in Chapter 12 we briefly discuss publications resulting from this project, besides this
final report. These are still a work in progress, and only for one of those publications we give a

2

preliminary version in Appendix A. Finally, in Chapter 13, we summarize the results from this
report, and we mention areas for further research.

3

4

Chapter 2

Terminology

As was mentioned in the Introduction, the problem of fighting one pirate is quite easy to solve,
as one can simply generate unique watermarks for each copy and embed them (hide them) in the
content. For fighting multiple pirates, there is no simple solution, and many suggestions have
been made to solve this problem efficiently. These solutions are very mathematical in nature,
and as one may know, mathematicians do not like wasting time and paper by using too many
words. Therefore mathematical reports generally contain many symbols and abbreviations (e.g.
i.e.), and this report is no exception. The disadvantage however is that we first have to explain
all the notations, which we will try to do here.

2.1 Fingerprinting codes

First of all, let us formulate the problem with pirates, colluders and fingerprints in a more
abstract and mathematical way. For this we use some realistic assumptions. For example, in the
most basic form, digital data can be represented as a long string of symbols, most often bits.
To make no specific assumptions yet, we can safely assume that data can be represented by
a long finite string of symbols from some finite alphabet Q of some size q. We often assume
without loss of generality that Q = {0, 1, . . . , q − 1}. The case q = 2 then reduces to the binary
alphabet Q = {0, 1}. Similar to the case of one pirate and using watermarks, in the case of
multiple pirates we also assume that to trace traitors, we add watermarks or fingerprints to
the data. These fingerprints are then finite strings of some codelength ` over Q.

Using these fingerprints, one can construct a fingerprinting code by assigning to each user,
i.e. each participant in the scheme, a unique fingerprint. We call these fingerprints codewords,
and we work with them as vectors from Q`. We usually denote the codeword assigned to user
j by ~xj . Writing n for the total number of users in the system, a fingerprinting code is thus
a collection of n vectors over Q of length `. We often write C to denote this fingerprinting
code, e.g. C = {~x1, . . . , ~xn}. Also, for convenience later on, we associate to a fingerprinting code
a fingerprinting code matrix X which has n rows and ` columns, and entries Xji = (~xj)i,
where (~xj)i is the symbol on position i of the codeword ~xj .

Note that all these codewords ~xj consist solely of the fingerprints. In this abstraction we
completely disregard the original product data and the embedding of the fingerprint in the data.
Also remark that when we talk about codewords, we really mean elements from C; any string of
` symbols from Q that is not a codeword is simply referred to as a word.

5

2.1.1 Coalitions and forgeries

We now turn our attention to the pirates. We usually write C for a coalition of pirates, and
its size is usually denoted by c. So C = {j1, . . . , jc} for some j1, . . . , jc, so that this coalition
possesses the codewords ~xj1 , . . . , ~xjc . Using these codewords, a coalition is able to produce a
forgery, i.e. some pirated fingerprint which is embedded in the data they distribute. A forgery is
usually denoted by ~y, and it may well be that ~y /∈ C, i.e. ~y is a word but possibly not a codeword.
For describing which forgeries a coalition can generate, we define the span (also known as the
feasible set or envelope), written as 〈~xj1 , . . . , ~xjc〉, as the set of all forgeries ~y that can be
generated by a coalition possessing the codewords ~xj1 , . . . , ~xjc . The exact definition of this span
depends on the scenario, but we do make one universal assumption about the span, namely the
Marking Assumption: if for some position i we have (~xj1)i = (~xj2)i = . . . = (~xjc)i = s for
some symbol s ∈ Q, i.e. all members of the coalition see the same symbol on position i, then also
any forgery ~y generated by this coalition satisfies (~y)i = s. In other words, if a coalition cannot
detect a fingerprint position (by noticing a difference in their symbols), then they cannot change
the symbol. This assumption is motivated by the fact that after the embedding of the fingerprint,
it is (assumed to be) impossible for pirates to distinguish between fingerprint positions and
positions of the digital data. Thus if pirates would change data on undetectable positions, they
would risk editing the product data which could possibly render the product unusable.1

2.1.2 Attack models

Besides the Marking Assumption, which is an assumption used in all scenarios, there may
be different assumptions on the definition of the span. Let us fix some position i, and let
S = {s1, . . . , sc} be the c (not necessarily different) symbols seen by a coalition on some position
i. Assume that not all symbols in S are the same, so that the Marking Assumption does not
hold for this position. Then there are some common attack models for determining which
values yi can have. First of all, the restricted digit model says that yi ∈ S for all positions i.
This may be a reasonable assumption when for instance symbols are implemented as different
decryption keys of a segment of data. Then it is reasonable to assume that pirates can only
distribute one of their keys, if they want their customers to have a working product. Also, if
symbols are really decryption keys, then it makes sense to assume that from a subset of all
keys, pirates cannot deduce the other keys. This model is the most restrictive model for pirates,
and in some cases it may be too restrictive. Therefore a different model considered sometimes
is the arbitrary digit model, which says that we only assume that yi ∈ Q. This may be a
more practical assumption when symbols are really just symbols taken from a simple finite
alphabet Q. Then pirates may also know this alphabet, and then they do not need to see all
symbols on position i to be able to put one of those other symbols there. Finally sometimes
the previous two scenarios are considered, but with erasures allowed. This means that on
detectable positions pirates can introduce the unreadable symbol ?, which is not part of the
alphabet. This gives pirates the advantage of not having to output one of their symbols (as is
required in the restricted digit model), but a disadvantage of outputting an erasure may be that
the distributor can see that the pirates detected this position.

Although the above attack models are really different in most cases, one can prove that if we
work with the binary alphabet, all attack models are equivalent. In the binary case we have
q = 2, so then |S| > 1 implies |S| = 2 and thus S = Q. So then obviously the restricted digit

1Some argue that this assumption may be too strong, and therefore some papers investigated the scenario when
pirates are allowed to edit a small fraction of all undetectable positions, i.e. when pirates are allowed to add some
noise to the data. However, this only complicates matters even more, while the results do not drastically change;
the same solution methods then still provide good solutions to the problem. For simplicity we will therefore not
investigate this model here.

6

model and arbitrary digit model are equivalent. As for erasures, a distributor can simply replace
all erasures in a forgery by the same symbol (say a 0), which is then also a forgery that could
have been generated by the coalition. In other words, this way the distributor can simulate that
the pirates used some specific strategy on all these erased position, so that pirates are actually
better off not using any erasures. So in the binary case, all attack models are essentially the
same and give pirates the same amount of power.

2.1.3 Pirate strategies

Now that we have described what pirates are allowed to do in several attack models, we can
also investigate some common pirate strategies which pirates may use to create forgeries.
Pirate strategies are sometimes also denoted by ρ, so that ~y = ρ(~xj1 , . . . , ~xjc). The fingerprinting
schemes we will discuss later should of course work against any pirate strategy, as the distributor
cannot force pirates to use a certain strategy and may not even know the strategy employed by
the coalition. Also, the list of pirate strategies given below is by no means complete, as there
are thousands of ways to choose ~y from 〈~xj1 , . . . , ~xjc〉. We just mention some which are the best,
the most often considered or just the most intuitive.

Let S = {s1, . . . , sc} again be the collection of symbols seen by the coalition on some position
i, and let αs = αs(S) denote the number of occurrences of symbol s ∈ Q in the set S. Then∑

s∈Q αs(S) = c. Also let a ∈R B denote a uniformly random choice of one symbol from B, e.g.
the probability that we choose a = b ∈ B is αb(B)/|B|. Finally let S′ be the set S when taken as
a strict set, i.e. with all duplicates removed. Then some common pirate strategies are as follows.

1. Always s0: Fix some symbol s0 in advance, and let yi = s0 whenever possible.

2. Random strategy: Let yi ∈R S′, e.g. if s ∈ Q, then the probability that yi = s is 1/|S′|.

3. Interleaving attack: Let yi ∈R S, e.g. if s ∈ Q, then the probability that yi = s is αs(S)/|S|.

4. Minority voting: Let yi be that symbol s ∈ Q that occurs the least often in S.

5. Majority voting: Let yi be that symbol s ∈ Q that occurs the most often in S.

6. Scapegoat strategy: Fix some user j ∈ C and let yi = (~xj)i for all i.

Note that we are a bit sloppy above, as the definitions are incomplete and therefore possibly
ambiguous. For example there may not be a unique majority/minority symbol, and in the
restricted digit model the symbol s0 may not be an allowed symbol on position i for a given
coalition. Even these borderconditions may have a great impact on the output forgery ~y and
whether pirates will get away with their illegal activities or not.

2.1.4 Example

Let us now briefly consider an example of all the above terminology. Suppose we have n = 3
users, an alphabet Q = {0, 1, 2} of size q = 3 and a codelength of ` = 4. Let the fingerprinting
code C be given as follows.

C = {(0, 1, 2, 2), (1, 0, 2, 0), (2, 1, 0, 0)}

Then the code matrix associated to this code is as follows.

X =

0 1 2 2
1 0 2 0
2 1 0 0

7

Alice 0 1 2 2
Bob 1 0 2 0
Charlie 2 1 0 0

Table 2.1: The codewords from C, assigned to the users Alice, Bob and Charlie.

Table 2.1 below also shows the distribution of codewords to users. Suppose the first two users
form a coalition, i.e. C = {1, 2}. Then the positions 1, 2, 4 are detectable, while on position 3
the marking assumption applies. If we are in the restricted digit model, then the span of their
codewords is given by the following 23 = 8 words.

〈(0, 1, 2, 2), (1, 0, 2, 0)〉RD = {(0, 0, 2, 0), (0, 0, 2, 2), (0, 1, 2, 0), (0, 1, 2, 2), (2.1)

(1, 0, 2, 0), (1, 0, 2, 2), (1, 1, 2, 0), (1, 1, 2, 2)} (2.2)

Similarly, in the arbitrary digit model the span can be calculated as the following set of 33 = 27
words.

〈(0, 1, 2, 2), (1, 0, 2, 0)〉AD = {(0, 0, 2, 0), (0, 0, 2, 1), (0, 0, 2, 2), (0, 1, 2, 0), (0, 1, 2, 1), (2.3)

(0, 1, 2, 2), (0, 2, 2, 0), (0, 2, 2, 1), (0, 2, 2, 2), (1, 0, 2, 0), (2.4)

(1, 0, 2, 1), (1, 0, 2, 2), (1, 1, 2, 0), (1, 1, 2, 1), (1, 1, 2, 2), (2.5)

(1, 2, 2, 0), (1, 2, 2, 1), (1, 2, 2, 2), (2, 0, 2, 0), (2, 0, 2, 1), (2.6)

(2, 0, 2, 2), (2, 1, 2, 0), (2, 1, 2, 1), (2, 1, 2, 2), (2, 2, 2, 0), (2.7)

(2, 2, 2, 1), (2, 2, 2, 2)}. (2.8)

Using the always 1 strategy, with a 2 if it is not possible to output a 1, the forgery would be
chosen as (1, 1, 2, 2), while the random strategy may give any of the feasible words with equal
probability. If the forgery was indeed ~y = (1, 1, 2, 2) and if we were working in the restricted
digit model, then from position 4 of the forgery the distributor could conclude that user 1 must
be part of the coalition, since he is the only one with the symbol 2 on that position. Similarly in
this case user 2 would be caught because ~y1 = (~x2)1 = 1, while no other users have a 1 there.

2.2 Fingerprinting schemes

Using fingerprinting codes, one can build fingerprinting schemes, which are informally defined
as the whole scheme to trace pirates. For this a code alone is not sufficient; one also needs a
tracing algorithm σ, mapping a forgery ~y to a set C ′ of accused users. Also, a fingerprinting
scheme may use several fingerprinting codes instead of just one code, which shows that a
fingerprinting scheme is really more than just a fingerprinting code.

We distinguish four types of fingerprinting schemes, based on two properties of a scheme: whether
it is deterministic or probabilistic, and whether it is static or dynamic. Below we will explain
these concepts.

2.2.1 Deterministic versus probabilistic

One of the choices that has to be made by the distributor is whether the whole process, and in
particular the tracing of pirates, is done deterministically or probabilistically. In this context,
we define a deterministic scheme to be a scheme where the tracing of traitors is purely
deterministic; when we claim we have caught a pirate, we can really prove that we have caught

8

a pirate. This in contrast to probabilistic schemes, where these statements are always with a
certain error probability ε. A tracing algorithm is therefore a deterministic tracing algorithm
if it really catches at least one pirate and does not accuse any innocent users, while such an
algorithm is called probabilistic when there is a probability ε > 0 of making an error, e.g. by not
accusing guilty users or by accusing innocent users. Later, when we will come to probabilistic
schemes, we will elaborate on the exact definition and what the value ε really means.

2.2.2 Static versus dynamic

Besides the choice of using a deterministic or a probabilistic scheme, we also distinguish between
whether the fingerprinting scheme uses one or multiple sequential fingerprinting codes. In static
schemes, we assume the distributor generates and distributes one single fingerprinting code,
and when at some point a forgery is discovered, some tracing algorithm determines which users
should be accused. This is the most practical approach for distributors; this even works when
e.g. some single on-demand movie is illegally distributed by a user, as this one forgery is enough
to identify this guilty user. A somewhat less practical approach, but giving distributors more
freedom, is the class of dynamic schemes. After distributing the code and receiving the
forgery, distributors are then allowed to start a new round of fingerprinting codes, possibly
with some suspected pirates disconnected from further participation in the scheme. This allows
distributors to gather feedback in the process, and use this information to adjust the next rounds
of fingerprinting codes accordingly.

For the dynamic schemes we introduce the concept of time, often denoted by the variable t.
This variable indicates the round the scheme is currently in. However, using time works only
when it is indeed a reasonable assumption that there will be a lot of feedback from pirates. This
may work for live streams and pirates broadcasting control words to watch these streams (so
that the distributor can detect this illegal distribution real-time and adjust the assignment of
control words for the next round) but this does not work when some user distributes, say, an
on-demand movie online, several weeks after its release. A dynamic scheme that requires 100
rounds to capture traitors would then require a coalition of pirates to first distribute 100 movies
before being able to catch these colluders. And if pirates only distribute these movies after all
100 movies are released, then still a dynamic scheme would not work, as the fingerprints cannot
be adjusted in between rounds then. So whether using a dynamic scheme is even an option
depends on the scenario, while static schemes can always be used.

Figures 2.1 and 2.2 model the outline of static and dynamic schemes in general. In each of
these schemes one can visualize the left part as the distributor, the middle part as the users
and the right part as the pirates. The secret data is assumed to be known to the distributor
only. This of course includes the distribution of codewords among users, but e.g. in the Tardos
scheme this also includes the values of pi, and in the Boneh-Shaw scheme this includes the secret
permutation of columns. The blue blocks in Figure 2.2 represent different rounds. Note that
after each round the distributor could of course already choose to disconnect a traitor, if he is
convinced of his guilt.

Combining the concepts of deterministic/probabilistic schemes and static/dynamic schemes, we
get four main classes of schemes, which are exactly the topics of the following four chapters.
In Chapters 4 and 5 we will look at deterministic and probabilistic static schemes respectively,
while in Chapters 6 and 7 we will investigate the two classes of dynamic schemes.

9

...
...

~x1

~xn

pirate 1

pirate c

detect illegal copy

secret data

accusation

...

~x2

σ(~y) ⊆ U

~y = ρ(~xj1, . . . , ~xjc)

~xj1

~xjc

...

initialization

code C = {~xj}
fingerprinting

pirate
strategy

user 1

user 2

user n

coalition

forged codeword

accused users

Figure 2.1: A schematic outline of static schemes. After the initialization, the distributor generates the
codewords for each user. These are embedded in the data, and the watermarked data is sent to the users.
Some of these users collude to create a forged copy from their own content. This forged copy is distributed
online, and the distributor also sees this distributed copy. By running a tracing algorithm σ on this copy,
the complete code and perhaps some secret data, the distributor calculates some set σ(~y) of guilty users.

10

...
...

~a1

~an

pirate 1

pirate c

detect illegal copy

secret data

...

~ya = ρ(~aj1, . . . ,~ajc)

(user j1)

(user jc)

~aj1

~ajc

...

initialization

code A = {~aj}
fingerprinting

pirate
strategy

user 1

user n

use results

...
...

pirate 1

pirate c’

detect illegal copy

secret data

...

~yb = ρ(~bj1, . . . ,
~bjc′)

(user j1)

(user jc′)

~bj1

~bjc′

...

fingerprinting

pirate
strategy

user 1

user n′

use results

code B = {~bj}
~b1

~bn′

. . .

t = 0

t = 1disconnect σ(~ya), fewer active users and pirates

t = 2disconnect σ(~yb), fewer active users and pirates

t = Tdisconnect σ(~yz), no active pirates

everyone connected, c active pirates

Figure 2.2: A schematic outline of dynamic schemes. After the initialization phase, the scheme starts
with the first round of codewords to send to the users. The pirates get together, create a forgery, and
distribute it online. The distributor detects this forgery in real-time, and uses the results from this round
to disconnect some users and set up a next fingerprinting code. The disconnected users no longer receive
any codewords, so basically the size of the coalition is reduced if some of the pirates have been disconnected.
Finally, after several rounds of fingerprinting codes and disconnecting users, the scheme has disconnected
all pirates. Thus if one were to start a new round, there would be no forgery ~y anymore.

11

2.3 Notation

As we have given a lot of notation above and we will be using most of it extensively, we conclude
this chapter with an overview of the most important notation we will use.

C the fingerprinting code

~xj the codeword assigned to user j

~y a forgery

Q the alphabet

q the alphabet size

? the symbol denoting erasure

∗ any symbol from the alphabet

n the total number of users

t the time

` the codelength

U the set of all users, usually taken as {1, . . . , n}

C a coalition of pirates

c the number of users in a coalition

X the `× n fingerprinting code matrix

ρ a pirate strategy

σ the accusation algorithm

12

Chapter 3

Preliminaries

Here we will also discuss some preliminaries from several areas of mathematics. This is both for
giving a short recap of the building blocks used throughout the report, and for describing which
notation we will use in those areas.

3.1 Coding theory

In coding theory we work with vector spaces of the form Q`, with Q a finite alphabet of some
order q and ` the length of vectors in this vector space. In these vector spaces we then use the
distance function or metric known as the Hamming distance. The Hamming distance between
two vectors ~x and ~y, written as d(~x, ~y), is defined as the number of positions i for which ~xi 6= yi.
It can be shown that this is a metric, and among others it satisfies d(~x, ~y) = d(~x− ~y,~0), where
~0 is the all-zero vector and the subtraction is done modulo q. This means that the distance
between ~x and ~y is equal to the weight of ~x− ~y, where the weight weight(~z) of some vector ~z is
defined as the number of non-zero positions of ~z.

Using this metric we define an error-correcting code C of length `, cardinality K and minimum
distance d, usually denoted by (`,K, d)q as a subset of K vectors from Q` such that any two
of its codewords (vectors ~c1,~c2 ∈ C) satisfy d(~c1,~c2) ≥ d. In other words, if we were to draw
spheres with radius less than d around each codeword, then any sphere will contain exactly one
codeword. Or similarly, if we draw spheres of radius less than d/2 around each codeword, then
no two spheres intersect or touch. These error-correcting codes are generally used for correcting
errors from data that possibly has some noise (errors) in it. More precisely, if Alice sends a
codeword ~c ∈ C to Bob, and Bob receives some word ~c0, then Bob can correctly decode this
word ~c0 to the actual codeword ~c by looking for the nearest codeword, if there were less than
d/2 errors in ~c0. Or equivalently, Bob can correctly decode the message if d(~c0,~c) ≤ b(d− 1)/2c.
One important class of error-correcting codes is the class of linear error-correcting codes,
which are codes that form a vector space on their own. This comes down to the extra constraints
that (i) any scalar multiple of a codeword is also a codeword (if ~c ∈ C and α ∈ Q then α~c ∈ C)
and (ii) any sum of two codewords is also a codeword (if ~c1,~c2 ∈ C then also ~c1 + ~c2 ∈ C). Since
such a code forms a vector space of some dimension k, its cardinality is of the form qk. The
notation used for linear codes is therefore slightly different from non-linear codes: one writes
[`, k, d]q to denote a linear error-correcting code of length `, dimension k and minimum distance
d. So a linear code with parameters [`, k, d]q has cardinality qk, while a code with parameters
(`,K, d)q has cardinality K.

Since a linear error-correcting code C forms a vector space of dimension k, such a code is the
linear span of k independent base vectors of length `. This means that any codeword from C is

13

a linear combination of these k independent vectors. Using a generator matrix G, with as
rows these k independent vectors, the code C is equal to the collection of vectors ~c = ~xG, with
~x ∈ Qk. This means we can represent the code by this matrix G rather than having to list all
codewords. If k is close to `, then an even shorter representation can be given using the parity
check matrix H of C. This matrix has ` − k rows and ` columns, where the rows span the
complement of the vector space C in Q`. Then a word ~c ∈ Q` is a codeword if and only if it is
orthogonal to this complement, which translates to the simple equation H~c = ~0. In this way it is
easy to verify whether a word is a codeword, and these matrices can also be used to determine ~c
from ~c0 efficiently.

Using basic combinatorics, one can easily prove that any linear code has to satisfy the Singleton
bound k+d ≤ `+ 1, or equivalently k ≤ `−d+ 1. Since we want to have as many codewords as
possible, given some codelength and minimum distance, a code would be optimal if k = `− d+ 1.
Codes satisfying this bound are called MDS (maximum distance separable) codes, while
codes not satisfying this bound are also called non-MDS codes.

From a linear error-correcting code C we construct a dual code D by saying D contains exactly
those words that are orthogonal to all codewords from C. This means that ~d ∈ D if and only if
~dT~c = ~0, or equivalently D has as parity check matrix G and as generator matrix H. One can
then also prove that the dual code of an MDS code with parameters [`, k, d]q is also an MDS
code with parameters [`, d− 1, k + 1]q, while the dual of a non-MDS code is also a non-MDS
code.

Finally let us conclude this subsection on coding theory with some commonly used codes, which we
may also run into here. The Hamming code is perhaps the best known code. Given some param-
eters r ≥ 2 and alphabet size q, the q-ary Hamming code is the code with parity check matrix
consisting of r rows and ` = (qr − 1)/(q − 1) columns, such that no two columns are dependent.
This code has parameters [`, `− r, 3]q and corrects one error. The dual code of this code, which
has this parity check matrix as its generator matrix instead, is known as the simplex code with
parameters [`, r, qr−1]q. One particular Hamming code is often referred to as the Hamming code,
namely the Hamming code with r = 3 and q = 2, i.e. the code with parameters [7, 4, 3]2. This code
is spanned by the rows {(1, 0, 0, 0, 1, 1, 0), (0, 1, 0, 0, 0, 1, 1), (0, 0, 1, 0, 1, 1, 1), (0, 0, 0, 1, 1, 0, 1)}.
Another code we will run into in this report is the following. Given a field Q of prime order
q, a primitive element α ∈ Q and numbers k and `, we construct the Reed-Solomon code of
length ` and dimension k by C = {(f(0), f(1), f(α), f(α2), . . . , f(α`−2)) | f ∈ F[X], deg(f) < k},
where F[X] is the set of polynomials in X with coefficients from F. This code is a linear code
with parameters [`, k, `− k + 1]q and is thus an MDS code.

3.2 Probability theory

Besides coding theory, we will also run into basic probability theory quite often. Of course
this happens mostly in the chapters on probabilistic schemes, where we somehow have to
prove that the probability of making an error is sufficiently small. First of all, we write the
probability that event E occurs as P[E], e.g. P[X = 3] = 1/6 if X is the outcome of a fair
dice roll. Also using this math blackboard style, we write E[X] for the expectation of X, i.e.
E[X] =

∑
x∈X x · P[X = x] if X is a discrete random variable on X , and E[X] =

∫
X xf(x)dx,

if X is a continuous random variable on X with probability density function (pdf) f(x)
of X. We will also use standard rules for the expectation, such as E[X + Y] = E[X] + E[Y]
and E[aX] = aE[X] for random variables X,Y and scalars a. We also use the cumulative
distribution function (cdf) of a continuous random variable, usually denoted by F (x), which
is defined by F (x) =

∫ x
−∞ f(x)dx. In particular F (−∞) = 0, F (+∞) = 1 and f(x) = d

dxF (x) if
f is continuous at x. Finally we will also use the variance of a random variable, defined by

14

Var[X] = E[(X − E[X])2] = E[X2]− E[X]2. And when using statistical data, we often denote
the statistical mean and variance of a data set by µ and σ2 respectively.

One probability distribution we will run into in this report is the Bernoulli distribution,
which is arguably the most simple of all non-trivial distributions. Given some probability of
success p, and a complementary probability of failure 1 − p and denoting success by 1 and
failure by 0, a random variable X with a Bernoulli distribution with parameter p satisfies
P[X = 1] = p and P[X = 0] = 1 − p. We will denote this distribution by Ber(p). Another
simple distribution is the distribution of the number of successes in n independent and identical
Bernoulli trials, which is known as the binomial distribution. This distribution function has
the form P[X = x] =

(
n
x

)
px(1− p)n−x for any 0 ≤ x ≤ n. We sometimes abbreviate the binomial

distribution of n trials and success probability p by Bin(n, p). Related to this distribution is the
negative binomial distribution, which counts the number of successes until a fixed number
r of failures arise, where each trial gives a success with probability p. This distribution has mean
rp/(1− p) and variance rp/(1− p)2.
Finally the only often considered distribution used in this report is the normal distribution,
also known as the Gaussian distribution. Given some distribution function, one can generate
samples according to this distribution, and calculate the mean for each of these samples. If we
then were to plot a histogram of these sample means, one would get a peak around the real
mean of the distribution, and the shape will be somewhat bell-curved. Letting the number of
trials and the individual sample sizes go to infinity, this histogram will always take the same
shape. This is known as the central limit theorem, and the resulting distribution function is
a (scaled, translated) Normal distribution. A normal distribution with mean µ and variance σ2

has as pdf the function f(x) = (2πσ2)−1/2e−(x−µ)
2/2σ2

. We denote the normal distribution with
mean µ and variance σ2 by N (µ, σ2).

We conclude this subsection with two somewhat more advanced results, which are useful for
bounding probabilities. The Markov inequality states that given some non-negative random
variable X and some value a 6= 0, it always holds that P[X ≥ a] ≤ E[X]/a. This can easily be
proven using the indicator function defined as I[E] = 1 if E occurs and I[E] = 0 otherwise.
Then a · I[X ≥ a] is 0 whenever X < a and a · I[X ≥ a] is a if X ≥ a, hence a · I[X ≥ a] ≤ X.
So E[X] ≥ E[a · I[X ≥ a]] = a · E[I[X ≥ a]] = a · (1 · P[X ≥ a] + 0 · P[X ≤ a]) = a · P[X ≥ a],
which proves the result.

The other result we use is the Chernoff bound, which in fact makes use of the Markov inequality.
One particular instance of the bound which we will use says that given a binomial random
variable X on n trials, with probability of success 1/2 and mean µ = E[X] = n/2, the probability
of large deviation of X from its mean is bounded by P[X − µ ≥ a] ≤ e−2a2/n for any a > 0. So
the probability of a large deviation of such a binomial random variable from its mean decreases
exponentially, with a quadratic term a2 in the exponent.

3.3 Graph theory

Later on in the report we will also make use of some basic graph theory, so we will also discuss
those basics here. First of all, an (undirected) graph G is defined by a set of points V , also
known as the vertices, and a set of lines E connecting pairs of vertices, also known as edges.
We also write G = (V,E) to describe this graph. To describe that an edge runs from some vertex
u to another vertex v there are several notations, e.g. u ∼ v, u↔ v, or simply by an unordered
set {u, v}. In this report we will also consider graph colorings, which are functions from V to
some set of colors K, such that each vertex gets exactly one color. These colors are also often
simply represented by numbers 1, . . . , k.

15

There are several properties a graph can have which are all very interesting, but we will only use
a few of these terms. We refer to the degree of a vertex v as the number of edges going through
v, i.e. the number of neighbors v has. We will also denote the degree of v by d(v). Furthermore
a matching is a subset of the edges M ⊆ E such that in the subgraph G′ = (V,M), each vertex
has degree at most 1. A maximum matching is a matching of maximum cardinality. Strongly
related to matchings are vertex covers, which are subsets W ⊆ V such that all edges in E
have at least one of the vertices of W as one of its endpoints.

3.4 Miscellaneous

Finally we list some miscellaneous terminology which is used throughout this report. We use the
big Oh notation to describe growth rates of functions of algorithms, as its parameters tend to
infinity. For example, we may write f(x) = O(g(x)) to say that as x goes to infinity, f(x) grows
as most as fast as some constant times g(x). More precisely, there exist some positive constants
M and x0 such that |f(x)| ≤ M |g(x)| for all x ≥ x0. We also use the big Omega notation,
f(x) = Ω(g(x)), to denote that |f(x)| ≥M |g(x)| as x→∞ for some constant M . Combining
both gives the big Theta notation f(x) = Θ(g(x)), which means that there exist two constants
M1,M2 such that M1|g(x)| ≤ |f(x)| ≤M2|g(x)| as x→∞. In some cases it is also convenient
to use the small oh notation, which says that f(x) = o(g(x)) if limx→∞ f(x)/g(x) = 0. This
is a slightly stronger statement than f(x) = O(g(x)), e.g. x2 = O(xa) for any a ≥ 2, while
x2 = o(xa) only for a > 2.

Lastly we borrow from information theory the basic terms entropy and mutual information.
The entropy of a discrete random variable X, written as H(X), is defined as H(X) =
−∑x∈X x log2(P[X = x]). The entropy basically describes the amount of information gained
from taking a sample from X; if one can easily guess the outcome with high success rate,
e.g. X ∼ Ber(1 − ε), then H(X) ≈ 0, while if X ∼ Ber(1/2) we get H(X) = 1. Also from
information theory we use the term mutual information. Given two random variables X,Y ,
the mutual information between these two variables, written as I(X,Y) or I(X;Y), is defined
as I(X;Y) =

∑
x∈X ,y∈Y P[X = x, Y = y] log2(P[X = x, Y = y]/P[X = x]P[Y = y]). This

value measures the mutual dependence between the two random variables; it tells us how much
knowing one random variable will tell us about the other. If X and Y are totally dependent,
then knowing X gives us a lot of information about Y and thus I(X;Y) is large. If however X
and Y are independent, then the term inside the logarithm is 1, so that the logarithm is always
0 and I(X;Y) = 0. So then knowing X tells us nothing about Y , as expected.

16

Part I

Literature survey

17

Chapter 4

Deterministic static schemes

Citations: For writing this chapter, the following articles were used: [AFS01], [AS04],

[BCE+01], [Bla03a], [Bla03b], [Bla03c], [BEN07], [BS98], [CE00], [EC01], [EC02],

[HVLLT98], [Ker10], [SS01], [SSW01], [SW98], [STW00], [SZ08], [TM05], [XMS07]

4.1 Introduction

In this chapter we will discuss deterministic static schemes, which are schemes using a single
fingerprinting code (static) and a deterministic tracing process. The latter means that a scheme
will only accuse users if there is certainty about guilt. This definition is still unclear and
ambiguous, and so there is still room for different interpretations of what properties such a
code should have, resulting in different classes of fingerprinting codes. We will discuss some
of the classes of codes which are most widely studied in literature in this chapter. Note that
throughout this chapter we will always be working in the restricted digit model, so that the
pirates can produce 〈~x1, . . . , ~xk〉 := {~y ∈ Q` | ∀1 ≤ i ≤ n : (~y)i ∈ {(~x1)i, . . . , (~xk)i}}.
First of all, there is the easiest and most basic definition of which properties a code should at least
have, namely resistance against framing attacks. This means that a coalition should not be able to
produce a codeword belonging to a user outside the coalition, since then the whole fingerprinting
code would be useless; then even if a single pirate outputs his copy, we cannot accuse him with
certainty, since he could argue that he was framed. Codes with the no-framing property are
called frameproof codes, and they were studied in [Bla03c], [BS98], [CE00], [EC02], [SW98].1

Definition 4.1 (Frameproof codes). Let C = {~x1, . . . , ~xn} be a fingerprinting code, and let c ≥ 1.
Then C is called a c-frameproof code if no coalition of size at most c can generate a codeword
~x ∈ C belonging to a user outside the coalition.

Another characterization of frameproof codes is that for any codeword not in some coalition of
size at most c, there exists some position i such that the ith symbol of this codeword is different
from all symbols seen by the coalition on that position; if for some codeword there exists no
such position, then the code is not frameproof, while if there is always such a position the code
is obviously frameproof.

Example 4.2 (A binary 2-frameproof code). Let ` = 3, let q = 2, and let n = 4. Suppose
C = {000, 011, 101, 110} as in Table 4.1. In this code, any two codewords have Hamming

1An even weaker class of codes was studied in [AB08], namely randomized frameproof codes. These are
codes which are frameproof with high probability, and with a small probability these codes may not even be
frameproof. In this chapter we do not study these codes, but for completeness we mention the existence of such
codes here.

19

distance 2, which implies that 〈~x1, ~x2〉 6= Q3 for any two codewords ~x1, ~x2 ∈ C. Also, any three
codewords can generate all words of length 3, i.e. 〈~x1, ~x2, ~x3〉 = Q3 for any three codewords
~x1, ~x2, ~x3 ∈ C. Thus if some codeword ~x3 ∈ C could have been generated by some coalition
possessing only two other codewords ~x1, ~x2 both different from ~x3, i.e. if ~x3 ∈ 〈~x1, ~x2〉, then we
would have Q3 6= 〈~x1, ~x2〉 = 〈~x1, ~x2, ~x3〉 = Q3 which is obviously a contradiction. So this code is
2-frameproof.

Alice 0 0 0
Bob 0 1 1
Charlie 1 0 1
Dave 1 1 0

Table 4.1: The fingerprinting code C for 4 users with length ` = 3.

Note that in the above example, there is no traceability. Given the forgery, one cannot always
find a member of the coalition. In fact, using e.g. the majority voting strategy pirates will always
get away with piracy in this example. For instance the word 001 could have been generated by
the three pairs of codewords {000, 101}, {000, 011}, {101, 011} while {000, 101} ∩ {000, 011} ∩
{101, 011} = ∅. So no user is part of all suspicious coalitions. Therefore any accusation of a
single user may be a false accusation, which makes it impossible to accuse any guilty user with
certainty.

Since frameproof codes do not have any requirements about traceability besides the case that
~y ∈ C, which makes these codes impractical for traitor tracing purposes, in the literature one
therefore also considers a somewhat stronger class of frameproof codes, namely the class of
secure frameproof codes. These were studied in e.g. [EC02], [STW00], [SZ08].

Definition 4.3 (Secure frameproof codes). Let C = {~x1, . . . , ~xn} be a fingerprinting code, and
let c1, c2 ≥ 1. Then C is a (c1, c2)-secure frameproof code if and only if no two disjoint
coalitions C1, C2 of size at most c1, c2 respectively, can generate a common word ~x. Sometimes
c1 = c2 = c, in which case we simply say that C is a c-secure frameproof code.

Example 4.4 (A binary 2-secure frameproof code). Again consider the code C =
{000, 011, 101, 110} from Example 4.2 and Table 4.1, with parameters ` = 3, q = 2, n = 4.
This code is a 2-secure frameproof code, since no two disjoint coalitions of size at most 2
can generate a common word. To see this, first notice that if one of the disjoint coalitions
has size only 1, then there is no common word because, as we saw earlier, the code is 2-
frameproof. For two coalitions of size 2, one can simply check all possibilities. Consider for
example the two disjoint coalitions C1, C2 possessing the codewords {000, 101} and {011, 110}
respectively. Then 〈000, 101〉 = {000, 001, 100, 101} and 〈011, 110〉 = {010, 011, 110, 111}, hence
〈000, 101〉 ∩ 〈011, 110〉 = ∅ as required.

Note that frameproof codes are a special case of secure frameproof codes; a code is c-frameproof
if and only if the code is (c, 1)-secure frameproof. Also, note that there is a simple ordering
in strength of secure frameproof codes. If a code is (c1, c2)-secure frameproof, then it is also
trivially (c′1, c

′
2)-secure frameproof for any c′1 ≤ c1, c

′
2 ≤ c2. In particular, if a code is c-secure

frameproof, then it is also c-frameproof.

Strongly related to secure frameproof codes are so-called separating hash families, which are
defined as follows.

Definition 4.5 (Hash families and separating hash families). Let U,Q be sets of cardinality
n, q respectively. Then a collection F of ` functions from U to Q is an (`, n, q)-hash family.

20

Furthermore for natural numbers c1, c2 an (`, n, q)-hash family is called an (`, n, q, {c1, c2})-
separating hash family if for any two disjoint subsets C1, C2 of U of cardinality at most c1
and c2 respectively, there exists at least one function g ∈ F such that {g(a) : a ∈ C1} ∩ {g(a) :
a ∈ C2} = ∅.

For certain parameters, separating hash families and secure frameproof codes are equivalent.
More precisely, if we identify elements of U with users, functions gi ∈ F with fingerprinting
positions i, vectors ~gj = (g1(aj), . . . , g`(aj)) ∈ Q` with codewords assigned to users j, and
elements of Q with symbols of an alphabet of size q, then the resulting code is a c-secure
frameproof code, as the following result states.

Theorem 4.6 (Relation between separating hash families and secure frameproof codes). Let F
be an (`, n, q)-hash family with n ≥ 2c. Then the fingerprinting code associated to F is a c-secure
frameproof code if and only if the hash family F is an (`, n, q, {c, c})-separating hash family.

Some papers investigated the problem of finding large (`, n, q, {c, c})-separating hash families
instead of finding large secure frameproof codes. Here we will not consider these separating
hash families separately, since they are not of interest to us. We will only mention the results
obtained via these separating hash families about secure frameproof codes.

Secure frameproof codes still do not permit traceability, but there is added security. For example,
a coalition C of size at most c cannot implicate a disjoint coalition C ′ of size at most c by
generating a word that could also have been generated by C ′. Then two disjoint coalitions
would have a nonempty intersection of their feasible sets, contradicting the fact that the code is
c-secure frameproof. This implies that with a c-secure frameproof code, if a forgery ~y is obtained
and it is known that some coalition C ′ of size at most c could have generated ~y, then C ′ contains
at least one traitor. This gives a trivial tracing algorithm with success rate 1/c, which first
calculates which coalitions of size at most c could possibly have generated ~y, randomly selects
one of these and then randomly selects one of its users. In some cases a better success rate than
1/c can be achieved. For example, in the case c = 2 the following result was proven in [STW00].

Theorem 4.7 (Traceability of 2-secure codes). Let C be a 2-secure frameproof code, and let ~y
be a forgery generated by some coalition C. Then either a guilty user can be identified, or a set
of three users can be identified, two of which must be guilty.

Thus, depending on which case arises, either a success rate of accusations of 1 or 2/3 can be
achieved for the case c = 2. As we will see later, for large c we conjecture that the worst-case
rate is approximately 1/c for large c, which makes these codes impractical for the use with a
tracing algorithm. Therefore we need an even stronger class of fingerprinting codes, which really
allows for tracing traitors. In the literature these codes are known as IPP codes, which were
first introduced in [HVLLT98] and later also studied in [AFS01], [AS04], [BCE+01], [BEN07],
[Bla03a], [SS01], [TM05], [XMS07]. 2

Definition 4.8 (IPP codes). Let C = {~x1, . . . , ~xn} ⊆ Q`, with |Q| = q, and let c ≥ 2. Then
C has the c-identifiable parent property, or C is a c-IPP code, if there exists a tracing
algorithm σ such that if a coalition C of size at most c generates a forgery ~y, then σ returns
only guilty users (i.e. σ(~y) ⊆ C) and σ returns at least one guilty user (i.e. |σ(~y)| ≥ 1).

2The ’IPP’ stands for the identifiable parent property, which finds its origin in DNA strings. Then
codewords translate to DNA-strings of parents, and feasible forgeries translate to possible DNA-strings of children
of these parents. The identifiable parent property then means that given the DNA-string of a child and knowing
all DNA-strings of possible parents, one can idenfity at least one of the parents. Later the term IPP code was
used in the more general sense for c parents, with c not necessarily equal to 2.

21

Example 4.9 (A ternary 2-IPP code). Consider the following code, which is also given in Table
4.2:

C = {0000, 0111, 0222, 1012, 1120, 1201, 2021, 2102, 2210}. (4.1)

This code has parameters ` = 4, q = 3, n = 9, and is also known as the Tetracode or the ternary
Hamming code of length 4. This is a linear error-correcting code with parameters [4, 2, 3]3, so any
two codewords have Hamming distance at least 3. One can easily verify that any two codewords
indeed have exactly Hamming distance 3, e.g. by verifying that any non-zero codeword has exactly
one zero.

Now suppose a coalition of size 2 generates a forgery ~y. Then, since the coalition’s two codewords
match on exactly one position, the codeword ~y matches with both codewords on that one position
as well. Also, ~y matches exactly one of them on the remaining three positions, giving 5 matches
with the coalition’s codewords in total. So one of the two codewords must match the forgery on
at least 3 positions, giving it a Hamming distance of at most 1 to the forgery. So the tracing
algorithm σ, which takes as input a forgery and outputs the user whose codeword is nearest to
the forgery in terms of Hamming distance, will always accuse exactly this guilty user. Therefore
this code is a 2-IPP code.

Alice 0 0 0 0
Bob 0 1 1 1
Charlie 0 2 2 2
Dave 1 0 1 2
Eve 1 1 2 0
Fred 1 2 0 1
George 2 0 2 1
Henry 2 1 0 2
Isaac 2 2 1 0

Table 4.2: The 2-IPP code C from Example 4.9, also known as the Tetracode. It was shown in [BEN07]
that this is one of only few ’beautiful’ IPP codes.

In the hierarchy of deterministic static fingerprinting schemes, these codes are better than all
other types of codes mentioned before; any c-IPP code is also a c-secure frameproof code and
hence also a c-frameproof code. And with the addition of traceability, these codes are now
more suited for the purpose of tracing traitors. However, the price we pay for this traceability,
besides possibly longer codelengths and a smaller cardinality of the codes is big, as the following
Theorem shows.

Theorem 4.10 (Minimum alphabet size of IPP codes). Let C be a c-IPP code with alphabet
size q and cardinality n > c. Then q > c.

While a longer codelength may be an acceptable consequence of better security, a bigger alphabet
size is very much unwanted. In the setting of broadcast channels, for instance, an implementation
of one of q symbols of a codeword position may be based on giving the user one of q keys for
decrypting a segment of the data. Then the distributor broadcasts the same segment of the
content q times, encrypted with the q different keys, so that users with certain keys (symbols)
can only decrypt one of those q encrypted segments. Thus an alphabet of size q would require
the distributor to distribute the same segment of the content q times. On the other hand, the
length of the codeword translates to the number of segments the content is divided in, which
does not really increase the bandwidth needed. Thus one would rather have a long codelength
than a big alphabet.

22

Some papers investigated an even stronger class of codes, called traceability codes. These are
defined as follows.

Definition 4.11 (Traceability codes). Let C = {~x1, . . . , ~xn} be a fingerprinting code, and let
c ≥ 2. Then C is a c-traceability code if for any coalition of size at most c and any forgery
generated by such a coalition, the user whose codeword has the smallest Hamming distance to
the forgery is always a guilty user.

These traceability codes have the added advantage that the tracing algorithm is simple: one just
calculates which of the codewords has the smallest Hamming distance to the forgery, and accuses
the user associated to that codeword. However, the complexity of the tracing algorithm is not
the biggest problem of IPP codes and deterministic static schemes in general. These traceability
codes thus solve a problem that is not really a big problem, while maintaining or even increasing
the problem of a large codelength and a big alphabet size. Therefore we will not consider these
codes here. Note however that in particular with traceability codes, the problem clearly asks
for the use of error-correcting codes, as with error-correcting codes one also ’decodes’ errors by
looking for the nearest neighbor in the `-dimensional space using the Hamming distance as the
metric. We will see that for the other classes of codes mentioned above, error-correcting codes
also show up more than once.

The rest of this chapter is structured as follows. First, in Section 4.2 we give an overview of the
most important results about frameproof codes that can be found in literature. Then, in Section
4.3 we do the same for secure frameproof codes. In Section 4.4 we then investigate IPP codes,
and mention bounds and constructions known for this class of codes. Finally in Section 4.5 we
summarize the results from this chapter.

4.2 Frameproof codes

As we saw above, c-frameproof codes are codes with only one requirement: no c users can frame
a single innocent user by generating his codeword from their codewords. Still, because of this
one requirement it is already quite difficult to construct large codes with short codelengths and
small alphabet sizes. Solving this problem of getting a maximum code size for a given codelength
and alphabet size, or minimizing the codelength for a given cardinality and alphabet size is
already a non-trivial problem, and this problem has only been solved for a few special cases. For
notation convenience, we will write F (c, `, q) throughout this section to denote the maximum
cardinality of a c-frameproof code of length ` and alphabet size q.

Let us start with an important bound derived in [Bla03c], which, as we will see later, is (almost)
tight for certain values of c, `, q.

Theorem 4.12. [Bla03c, Theorem 1 and Corollary 2] Let c, `, q ≥ 2, let r ∈ {0, . . . , c − 1}
such that r ≡ ` mod c and let k1 = d`/ce and k0 = b`/cc. Then

F (c, `, q) ≤ max{qk1 , r(qk1 − 1) + (c− r)(qk0 − 1)} ≤ max{1, r}qk1 +O(qk1−1). (4.2)

From this it follows that ` = Ω(c logq(n)).

Proof. Let C be a frameproof code with parameters (c, `, q). For any subset of positions
S ⊆ {1, . . . , `}, define U(S) as the set of all codewords ~x ∈ C which are ’unique’ on the positions
identified by S, i.e. let U(S) = {~x ∈ C | ∀~y ∈ C \ {~x}, ~y[S] 6= ~x[S]}, where ~x[S] = (xi)i∈S , e.g.
the subword of ~x indexed by positions in S. Then obviously |U(S)| ≤ q|S|, since every codeword
~x ∈ U(S) is uniquely identified by its subword ~x[S], for which there are only q|C| different choices.

23

Also, if this bound is met, then every subword ~s ∈ Q|S| corresponds to one unique codeword
~x ∈ C with ~x[S] = ~s. Hence, if |C| > q|S|, then at least one vector ~s ∈ Q|S| corresponds to at
least two vectors ~x, ~y ∈ C with ~x[S] = ~y[S] = ~s, so that |U(S)| ≤ q|S| − 1.

Let S1, . . . , Sc ⊆ {1, . . . , `} be a partition of {1, . . . , `}, with each subset containing approximately
`/c elements (i.e. r of them have size d`/ce = k1 and c − r of them have size b`/cc = k0). If
|C| > qk1 then |C| > q|Sj | for all of these sets Sj , so that |U(Sj)| ≤ q|Sj | − 1. So then∑c

j=1 |U(Sj)| = r(qk1 − 1) + (c− r)(qk0 − 1) gives us exactly the bound we need. Thus proving

that C = ∪cj=1U(Sj) proves that |C| = |∪cj=1U(Sj)| ≤ ∪cj=1|U(Sj)| = r(qk1−1)+(c−r)(qk0−1),
which would prove the result.

Now assume that C 6= ∪cj=1U(Sj), e.g. ~x ∈ C \ (∪cj=1U(Sj)). Since ~x is not in any of these sets
U(Sj), ~x is not unique on these sets of positions, so there exist ~x1, . . . , ~xc ∈ C with ~x[Sj] = ~xj [Sj]
for all j ∈ {1, . . . , c}. But then ~x can be generated by the coalition of size c possessing the
codewords {~x1, . . . , ~xc}, which is a contradiction with the assumption that C is frameproof
against c colluders. This proves the result.

This bound allows us to solve F (c, `, q) for a special class of codes, namely codes with ` ≤ c.
The following code belongs to this special class, as the Lemma after the definition shows.

Definition 4.13. [BS98, Section IIIA] We define the q-ary unit code of size `(q − 1) as
Γq(`) = {α~ei | α ∈ Q \ {0}, 1 ≤ i ≤ `}. This code consists of all vectors with `− 1 zeroes and a
single non-zero symbol.

Lemma 4.14. [Bla03c, Construction 1] [BS98, Claim III.1, for q = 2] Let c, `, q ≥ 2 with
` = c. Then the code C = Γq(`) is c-frameproof and has cardinality n = `(q − 1).

Proof. Let C be given as above, and suppose that C is not frameproof, so that there exists
some codeword ~x = α0~ei0 ∈ C that could have been generated by some other coalition not
possessing the codeword ~x. Since ~x is the only word in C which has symbol α0 on position i0
this immediately leads to a contradiction. Therefore Γq(`) is frameproof for any `.

As it turns out, there is no better code than this in this special class of codes, which is an
immediate consequence of the upper bound on the cardinality of any frameproof code given in
Theorem 4.12.

Corollary 4.15. [Bla03c, Corollary 3] Let ` ≤ c. Then F (c, `, q) = `(q − 1).

An immediate consequence of the previous results is that any binary c-frameproof code of
cardinality n ≥ c must have length at least c, as was also noted in [BS98, Section IIIA].

The bound given in Theorem 4.12 is not only tight for the above-mentioned special class of
codes; for the general case one can also construct codes of cardinality Θ(qk1), as was proven
in [Bla03c]. However, these codes satisfy q ≥ ` = Ω(c log(n)), thus giving a huge alphabet size.

Theorem 4.16. [Bla03c, Construction 2] Let c, `, q ≥ 2, and let q ≥ ` be a prime power. Let
k1 = d`/ce, and let α1, . . . , α` be ` distinct elements from the finite field Fq. Finally let C be
defined as the following (Reed-Solomon) code:

C = {(f(α1), . . . , f(α`)) | f ∈ Fq[X],deg(f) < k1}. (4.3)

Then the code C has cardinality qk1 and is frameproof against c colluders.

24

Proof. First note that any polynomial f over a finite field Fq of degree at most k1− 1 is uniquely
determined by specifying f at any k1 points α1, . . . , αk1 . Since k1 < `, it follows that |C| = qk1 .
Now suppose C is not frameproof against c colluders, so that some coalition of size c, possessing
some codewords Y = {~y1, . . . , ~yc}, can generate a codeword ~x ∈ C \ Y . Since ~x agrees with
elements in Y in a total of ` positions, there must be some codeword yi ∈ Y which matches
~x in at least d`/ce = k1 positions, say positions S = {i1, . . . , ik1}. But if ~x[S] = yi[S], then
the polynomial f associated to ~x also intersects with the polynomial g associated to ~y on k1
positions, which implies that f = g, hence ~x = yi. This is a contradiction with ~x ∈ C \ Y , hence
the result.

f(α1) f(α2) f(α3)
(α1 = 0) (α2 = 1) (α3 = 2)

Alice 0 0 0 (f(X) = 0)
Bob 0 0 1 (f(X) = 1)
Charlie 0 0 2 (f(X) = 2)
Dave 0 1 2 (f(X) = X)
Eve 1 2 0 (f(X) = X + 1)
Fred 2 0 1 (f(X) = X + 2)
George 0 2 1 (f(X) = 2X)
Henry 1 0 2 (f(X) = 2X + 1)
Isaac 2 1 0 (f(X) = 2X + 2)

Table 4.3: The 2-frameproof code constructed from Theorem 4.16 by taking q = ` = 3 and c = 2, so that
k1 = 2. The polynomials f(X) are of degree at most 1, so we have 9 polynomials f(X) = aX + b for
a, b ∈ F3. The values of α are simply taken as α1 = 0, α2 = 1, α3 = 2.

For even bigger alphabet sizes, it was shown that the other value of the maximum in Theorem
4.12 is also (almost) tight. For the case that k1 = k0, i.e. `/c integral, and ` ≡ 0 mod c, Theorem
4.12 gives an upper bound on the cardinality of a c-frameproof code of c(q`/c− 1). The following
construction matches the highest order term of this bound for c = 2.

Theorem 4.17. [Bla03c, Construction 3] Let c = 2, let ` = 2`0 ≥ 4 be even, let q0 ≥ `+ 1 be a
prime power and let q = q20 + 1. Let Fq be the finite field of order q0, and let F = {∞}∪ (Fq0)2 =
{∞, (0, 0), (0, 1), . . . , (q0 − 1, q0 − 1)} so that |F | = q. Let β0, β1, α1, . . . , α`−1 be `+ 1 distinct
elements from Fq0. For two polynomials f, g ∈ Fq0 [X], write (f, g)(α) = (f(α), g(α)). Let the
codes C1, C2 ⊆ F ` be defined as

C1 = {(∞, (f, g)(α1), (f, g)(α2), . . . , (f, g)(α`−1)) | deg(g) ≤ deg(f) = `0 − 1}, (4.4)

C2 = {((t(β0), t(β1)), (s, t)(α1), . . . , (s, t)(α`−1)) | deg(s) ≤ `0 − 2,deg(t) ≤ `0}. (4.5)

Then the code C = C1 ∪ C2 is 2-frameproof with cardinality q`−10 (2q0 − 1) = cq`/c − o(q`/c).

Proof. First, remark that (t(β0), t(β1)) 6= ∞, so that C1 and C2 are disjoint. Hence |C| =
|C1 ∪ C2| = |C1| + |C2|. Now for C1 we see that ~x ∈ C1 is uniquely determined when f
and g are specified. Since there are q`0−10 (q0 − 1) choices for f (q0 choices for the first `0 − 1
coefficients and q0−1 non-zero choices for the coefficient of X`0−1) and q`00 choices for g, we have
|C1| = q2`0−10 (q0−1) = q2`00 (1−1/q0). Similarly, determining codewords in C2 equals determining
s and t, for which there are q`0−10 q`0+1

0 = q2`00 options. So |C| = |C1|+ |C2| = q2`00 (2− 1/q0) =
2(q − 1)`0(1− 1/(2q0)) = 2(q − 1)`/2(1− 1/(2

√
q − 1)), which proves the cardinality given for C

is correct.

25

For proving that the code is frameproof against 2 colluders, assume that the code is not frameproof
and that some codeword ~y can be generated by the codewords ~x1, ~x2 which are both not equal
to ~y. We first claim that codewords ~a ∈ C1,~b ∈ C2 can match in at most `0 − 1 positions. For
proving this, suppose ~a ∈ C1,~b ∈ C2 match in `0 positions. Since their first coordinates differ,
this implies that on the remaining positions there are `0 matches. This then implies that the
polynomials f and s match on `0 positions. Since the degrees of both polynomials are less than
`0, this means that f = s. But f has degree `0 − 1 and s has degree stricly less than `0 − 1,
which gives a contradiction. (Note that here we make use of the fact that deg(f) = `0−1 instead
of deg(f) ≤ `0 − 1.)

Now suppose ~y ∈ C1. Besides the first coordinate, there are `− 1 = 2`0 − 1 positions, so that
one of ~x1, ~x2 must match with ~x on at least `0 positions. Hence, by the previous result, if we
assume w.l.o.g. that ~x1 is this codeword, then ~x1 ∈ C1, since any ~a ∈ C1,~b ∈ C2 can match in
at most `0 − 1 positions. But then it follows that the polynomials f, g associated to ~y are the
same as those associated to ~x1, so that ~y = ~x1, which is a contradiction.

Suppose on the other hand that ~y ∈ C2. Then by similar reasoning, one of ~x1, ~x2 must match
~y on at least `0 + 1 positions, which would imply ~y = ~x1 (or ~y = ~x2). This again gives a
contradiction, which concludes the proof.

∞ (f, g)(0) (f, g)(1) (f, g)(2)

Alice 25 0 5 10 (f(X) = X) (g(X) = 0)
Bob 25 5 10 15 (f(X) = X + 1) (g(X) = 0)
Charlie 25 10 15 20 (f(X) = X + 2) (g(X) = 0)
Dave 25 15 20 0 (f(X) = X + 3) (g(X) = 0)
Eve 25 20 0 5 (f(X) = X + 4) (g(X) = 0)
Fred 25 0 10 20 (f(X) = 2X) (g(X) = 0)
George 25 5 15 0 (f(X) = 2X + 1) (g(X) = 0)
. .
Zoey (500) 25 24 18 12 (f(X) = 4X + 4) (g(X) = 4X + 4)

Table 4.4: The 2-frameproof code C1 from Theorem 4.17, with `0 = 2, ` = 4, q0 = 5 and q = 26. We
use the mapping (i, j) 7→ 5i+ j to map points (f(α), g(α)) to symbols from an alphabet of size 26, and
we map ∞ to symbol 25. Codewords from C1 are formed by taking polynomials f(X) = aX + b and
g(X) = cX + d, with a, b, c, d ∈ F5 and a 6= 0, giving |C1| = 500.

t(3, 4) (s, t)(0) (s, t)(1) (s, t)(2)

Adam 0 0 0 0 (s(X) = 0) (t(X) = 0)
Ben 0 5 5 5 (s(X) = 1) (t(X) = 0)
Chris 0 10 10 10 (s(X) = 2) (t(X) = 0)
Donald 0 15 15 15 (s(X) = 3) (t(X) = 0)
Eleanor 0 20 20 20 (s(X) = 4) (t(X) = 0)
Fiona 6 1 1 1 (s(X) = 0) (t(X) = 1)
Greg 6 6 6 6 (s(X) = 1) (t(X) = 1)
. .
Zora (625) 14 24 22 23 (s(X) = 4) (t(X) = 4X2 + 4X + 4)

Table 4.5: The 2-frameproof code C2 from Theorem 4.17, with `0 = 2, ` = 4, q0 = 5 and q = 26. Codewords
from C2 are formed by taking polynomials s(X) = a and t(X) = bX2 + cX + d, with a, b, c, d ∈ F5, giving
|C2| = 625. In total the code C = C1 ∪ C2 has cardinality n = 1125 = q`−10 (2q0 − 1).

26

In the same paper of Theorem 4.12, Blackburn investigated whether an even stronger bound
could be derived, finally resulting in the following Theorem. This indeed gives a stronger bound
in some cases. We will not go into the details of the proof here, as it would take several pages to
prove the result while not adding value to the report. We will only give a sketch of the proof.

Theorem 4.18. [Bla03c, Theorem 11, Corollary 12] Let t, k1, ` be positive integers such that
1 ≤ k ≤ ` and t ∈ {1, . . . , c}, such that k1 = d`/ce and t ≡ ` mod c. Then

F (c, `, q) ≤
(

`

`− (t− 1)k1

)
qk1 +

(
`

k1 − 1

)
qk1−1 =

(
`

`− (t− 1)k1

)
qk1 +O(qk1−1). (4.6)

Sketch of the proof. The proof in [Bla03c] goes via what is introduced as t-colliding sets (a
collection of subsets such that no t sets are disjoint) and frameproof code set systems. First
it is proven in [Bla03c, Lemma 7] that if a frameproof code of cardinality |C| exists, then a
frameproof code set system of cardinality |D| exists such that |D| ≥ |C| −

(
`

k−1
)
qk−1. Then

in Theorem 8 [Bla03c] a bound on |D| is given, namely |D| ≤ qk/(1 −m(t, k, `)/
(
`
k

)
) = κqk.

Finally [Bla03c, Theorem 11] gives an upper bound on m(t, k, `), which combined with the above
gives the desired result.

For a specific choice of parameters, namely ` = 5 and c = 3, Blackburn included a construction
in [Bla03c] showing that this bound is also at least in some cases (almost) tight. For ` = 5, c = 3
we get k1 = 2, t = 2 so that any q-ary code has cardinality at most 5

3q
2 + o(q) according to

Theorem 4.18. This is indeed a stronger bound than the one from Theorem 4.12, which in this
case gives n ≤ max{q2, 2(q2 − 1) + (q − 1)} = 2q2 +O(q). The following 3-frameproof code has
cardinality 5

3q
2 − o(q2), thus showing that in this case Blackburn’s second bound is tight up to

order terms. We will not give a proof that this code is indeed 3-frameproof, as again the proof
would only be lengthy and not add any value to this report. For a proof, see [Bla03c].

Lemma 4.19. [Bla03c, Construction 4] Let q = 3q0 + 1, with q0 ≥ 4 a prime power. Let the
sets X1, . . . , X5 ⊆ (Z3 ∪ {∞})5 of size 3 each be defined as

X1 = {(∞, a, a, a, a) | a ∈ Z3} (4.7)

X2 = {(a,∞, a, a+ 1, a+ 2) | a ∈ Z3} (4.8)

X3 = {(a, a,∞, a+ 2, a+ 1) | a ∈ Z3} (4.9)

X4 = {(a, a+ 1, a+ 2,∞, a) | a ∈ Z3} (4.10)

X5 = {(a, a+ 2, a+ 1, a,∞) | a ∈ Z3} (4.11)

Let α1, . . . , α4 be distinct elements from Zq0, and let the sets Y1, . . . , Y5 ⊆ (Zq0 ∪ {∞})5 of
cardinality q20 each be defined as

Y1 = {(∞, f(α1), f(α2), f(α3), f(α4)) | f ∈ Zq0 [X], deg(f) ≤ 1} (4.12)

Y2 = {(f(α1),∞, f(α2), f(α3), f(α4)) | f ∈ Zq0 [X], deg(f) ≤ 1} (4.13)

Y3 = {(f(α1), f(α2),∞, f(α3), f(α4)) | f ∈ Zq0 [X], deg(f) ≤ 1} (4.14)

Y4 = {(f(α1), f(α2), f(α3),∞, f(α4)) | f ∈ Zq0 [X], deg(f) ≤ 1} (4.15)

Y5 = {(f(α1), f(α2), f(α3), f(α4),∞) | f ∈ Zq0 [X], deg(f) ≤ 1} (4.16)

Let the codes C1, . . . , C5 of cardinality 3q20 each be defined as

C1 = {((x1, y1), . . . , (x5, y5)) | (x1, . . . , x5) ∈ X1, (y1, . . . , y5) ∈ Y1} (4.17)

C2 = {((x1, y1), . . . , (x5, y5)) | (x1, . . . , x5) ∈ X2, (y1, . . . , y5) ∈ Y2} (4.18)

C3 = {((x1, y1), . . . , (x5, y5)) | (x1, . . . , x5) ∈ X3, (y1, . . . , y5) ∈ Y3} (4.19)

C4 = {((x1, y1), . . . , (x5, y5)) | (x1, . . . , x5) ∈ X4, (y1, . . . , y5) ∈ Y4} (4.20)

C5 = {((x1, y1), . . . , (x5, y5)) | (x1, . . . , x5) ∈ X5, (y1, . . . , y5) ∈ Y5} (4.21)

27

Then the code C = C1 ∪ C2 ∪ C3 ∪ C4 ∪ C5 is 3-frameproof of length 5 and cardinality 15q20 =
5
3(q − 1)2 = 5

3q
2 − 10

3 q + 5
3 .

(∞,∞) (a, f(0)) (a, f(1)) (a, f(2)) (a, f(3))

Alice 15 0 0 0 0 (f(X) = 0)
Bob 15 1 1 1 1 (f(X) = 1)
Charlie 15 2 2 2 2 (f(X) = 2)
Dave 15 3 3 3 3 (f(X) = 3)
Eve 15 4 4 4 4 (f(X) = 4)
Fred 15 0 1 2 3 (f(X) = X)
George 15 1 2 3 0 (f(X) = X + 1)
. .
Zoey (75) 15 14 13 12 11 (f(X) = 4X + 4)

Table 4.6: The 2-frameproof code C1 from Lemma 4.19, with ` = 5,m = 5 and q = 16. We use the
mapping (i, j) 7→ 5i+ j to map points (a, f(α)) to symbols from an alphabet of size 16, and we map the
pair (∞,∞) to symbol 15.

(a, f(0)) (a+ 2, f(1)) (a+ 1, f(2)) (a, f(3)) (∞,∞)

Adam 0 10 5 0 15 (f(X) = 0)
Ben 1 11 6 1 15 (f(X) = 1)
Chris 2 12 7 2 15 (f(X) = 2)
Donald 3 13 8 3 15 (f(X) = 3)
Eleanor 4 14 9 4 15 (f(X) = 4)
Fiona 0 11 7 3 15 (f(X) = X)
Greg 1 12 8 4 15 (f(X) = X + 1)
. .
Zora (75) 14 13 12 11 15 (f(X) = 4X + 4)

Table 4.7: The 2-frameproof code C5 from Lemma 4.19, with ` = 5,m = 5 and q = 16.

Finally, before we move on to the relation with error-correcting codes, we give a result from [SW98]
which also shows that for large q, one can get codelengths of ` = O(c2 log(n)).

Lemma 4.20. [SW98, Theorem 3.11] For any prime power q and any integer t < q there exists
a bq/(t− 1)c-frameproof code of length q2 + q and cardinality qt.

4.2.1 Constructions from linear error-correcting codes

As mentioned earlier, there is a strong relationship between several classes of deterministic static
schemes and error-correcting codes. Frameproof codes can also be constructed from certain
error-correcting codes, as we will show here. First of all, the following result characterizes which
linear error-correcting codes are 2-frameproof codes.

Lemma 4.21 (2-frameproof codes from linear error-correcting codes). [CE00, Theorem 1] A
linear [`, k, d]q error-correcting code is 2-frameproof if and only if supp(~x1) ∩ supp(~x2) 6= ∅ for
all ~x1, ~x2 ∈ C.

Proof. Suppose supp(~x1)∩ supp(~x2) = ∅ for some ~x1, ~x2 ∈ C. Then ~x1 + ~x2 ∈ C since C is linear,
and entries of ~x1 + ~x2 satisfy 0 ≤ (~x1 + ~x2)i ≤ q − 1 for all 1 ≤ i ≤ `. Since ~x1 + ~x2 ∈ 〈~x1, ~x2〉,
the code is not 2-frameproof.

28

For the converse, let ~x1, ~x2, ~y be three distinct codewords. Then ~y − ~x1 and ~y − ~x2, where
subtraction is done modulo q, have a non-empty intersecting support, i.e. there exists some
position i such that (~y−~x1)i 6= 0 and (~y−~x2)i 6= 0. This means that (~y)i 6= (~x1)i and (~y)i 6= (~x2)i,
hence the code is 2-frameproof.

One can prove that any linear error-correcting code with sufficiently large minimum distance
can be used as a c-frameproof code, where c depends on ` and d only, as the following Lemma
shows. However, for most codes k is too large, i.e. the code contains too many codewords, so
that the code will only be (trivially) 1-frameproof and not even 2-frameproof.

Lemma 4.22 (Frameproof codes from linear error-correcting codes). [CE00, Proposition 1] A
linear [`, k, d] error-correcting code is dd/(`− d)e-frameproof.

Proof. Suppose ~x1, . . . , ~xc, ~y ∈ C and ~y ∈ 〈~x1, . . . , ~xc〉. Since ~y matches with ~x1, . . . , ~xc on a total
of ` positions, ~y must match with at least one of those ~xj on at least d`/ce positions. Since any
two codewords can only match on at most `−d coordinates, it follows that only if c ≥ d`/(`−d)e,
an innocent user can be framed. Hence taking c ≤ d`/(`− d)e − 1 = dd/(`− d)e assures that no
innocent user can be framed.

Corollary 4.23. If a linear [`, k, d] error-correcting code C satisfies d ≥ `(1− 1/c), then C is
c-frameproof.

If we distinguish between MDS and non-MDS codes, we can even get exact values for the
maximum value of c for which a linear error-correcting code is c-frameproof, as the following
results show.

Lemma 4.24 (Frameproof codes from non-MDS error-correcting codes). [CE00, Proposition
2] An [`, k, d] non-MDS-code C is at most d(` − d′ + 1)/(d′ − 1)e-frameproof, where d′ is the
minimum distance of the dual code with parameters [`, `− k, d′].

Proof. From coding theory we know that for any d′ − 1 positions and any d′ − 1 values assigned
to those positions, there are exactly qk−d

′+1 > 1 codewords taking those values on those
coordinates. Hence we can partition [`] in d`/(d′ − 1)e sets of at most d′ − 1 positions, and
find codewords ~xj for each set such that ~xj and ~y have the same symbols on those positions.
Therefore one can frame any user using a coalition of size d`/(d′ − 1)e, so that C is at most
d`/(d′ − 1)e − 1 = d(`− d′ + 1)/(d′ − 1)e-frameproof.

Lemma 4.25 (Frameproof codes from MDS error-correcting codes). [CE00, Corollary 1] An
[`, k, d] MDS-code C is exactly dd/(`− d)e-frameproof.

Proof. If C is MDS, then d′ = k + 1. Therefore the proof of the previous lemma, to prove that
C is at most d(`− d′ + 1)/(d′ − 1)e-frameproof, does not work anymore, because qk−d

′+1 = 1,
hence ~y is the only word with those symbols on those d′ − 1 positions. However, we can use the
same method to prove that C is at most d(`− d′ + 2)/(d′− 2)e-frameproof. Since for MDS codes,
d′ = k+ 1, we get that C is at most d(`− d′ + 2)/(d′ − 2)e = d(`− k+ 1)/(k− 1)e = dd/(`− d)e-
frameproof, while we saw earlier that C is at least dd/(` − d)e-frameproof. So C is exactly
dd/(`− d)e-frameproof.

Example 4.26 (Frameproof codes from MDS error-correcting codes). [CE00, Example 1] A
[c+ 1, 2, c] MDS-code over an alphabet of size c+ 1 is a c-frameproof code of length c+ 1 and
cardinality q2.

29

Boneh and Shaw gave the following result regarding the existence of error-correcting codes with
large minimum distance, so that one can also construct frameproof codes from these codes.

Lemma 4.27. [BS98, Lemma III.3] Let ` = 8c log(n). Then there exists an error-correcting
code of length `, cardinality n and alphabet size 2c with minimum distance d > `(1− 1/c).

Corollary 4.28. Let ` = 8c log(n). Then there exists a c-frameproof code of length `, cardinality
n and alphabet size 2c.

This shows that for an alphabet of size 2c we can construct frameproof codes of length O(c log(n)).
However, we prefer to have codes with smaller alphabets. Using code concatenation, described
in the next subsection, we can reduce the alphabet size, at the cost of increasing the codelength.

4.2.2 Concatenating codes

Finally, we conclude the section on frameproof codes by a method to obtain frameproof codes
with new, different parameters from other frameproof codes which we know to exist. This is done
through concatenation of codes. Below is first the definition of concatenated codes, followed by
its application to frameproof codes.

Definition 4.29 (Concatenating codes). For i = 1, 2, let Ci be a code of length `i, cardinality
ni over an alphabet of size qi, and let n1 > q2. Then the concatenated code C = C1 ◦ C2 is
the code obtained by replacing the q2 distinct symbols in C2 by distinct codewords from C1. This
concatenated code has length `1`2, cardinality n2 and uses an alphabet of size q1.

Lemma 4.30 (Concatenating frameproof codes). [CE00, Proposition 5] [BS98, Lemma III.2
for q1 = 2] Let C1, C2 be c-frameproof codes of length `i, cardinality ni over an alphabet of size qi,
for i = 1, 2, and let n1 > q2. Then the code C = C1 ◦ C2 is a c-frameproof code.

Proof. Because C2 is c-frameproof, one cannot generate ~y ∈ C2 from at most c other codewords
in C2. In other words, for each such tuple of c+ 1 codewords, there exists some position i such
that (~y)i /∈ {(~x1)i, . . . , (~xc)i}. Replacing symbols by codewords, we see that this expression
becomes (~y)i = ~y′ /∈ {~x′1, . . . , ~x′c} = {(~x1)i, . . . , (~xc)i}, for some codewords ~y′, ~x′1, . . . , ~x

′
c ∈ C1.

This condition is guaranteed by the c-frameproofness of C1, which proves the result.

Let us illustrate this method through an example, in which we concatenate a binary 2-frameproof
code of cardinality 4 and a quaternary 2-frameproof code of cardinality 6 to form a binary
2-frameproof code of cardinality 6.

Example 4.31. Let C1 = {000, 011, 101, 110} be a binary 2-frameproof code of length
`1 = 3 and cardinality n1 = 4, and let C2 = {10, 20, 30, 01, 02, 03} be a quaternary 2-
frameproof code of length `2 = 2 and cardinality n2 = 6. Then the code C = C1 ◦ C2 =
{011000, 101000, 110000, 000011, 000101, 000110}, also given in Table 4.8, is a binary 2-frameproof
code of length `1`2 = 6 and cardinality n2 = 6.

The concatenation of codes can be used to construct families of codes with increasing `, main-
taining a somewhat good efficiency. The following result is also a consequence of repetitive code
concatenations, giving a family of 2-frameproof codes with a length polynomial in log(n).

Lemma 4.32. [SW98, Theorem 3.15] For any j ≥ 1, there exists a binary 2-frameproof code
of length 6 · 4j and cardinality 52

j
.

30

block 1︷ ︸︸ ︷ block 2︷ ︸︸ ︷
Alice 0 1 1 0 0 0
Bob 1 0 1 0 0 0
Charlie 1 1 0 0 0 0
Dave 0 0 0 0 1 1
Eve 0 0 0 1 0 1
Fred 0 0 0 1 1 0

Table 4.8: The 2-frameproof code C1 ◦ C2 for n2 = 6 users with length `1`2 = 6.

Note that the code concatenation can be used to turn any non-binary frameproof code into a
binary one, by concatenating it with a sufficiently large binary frameproof code. So we can
also turn the frameproof codes obtained in Corollary 4.28 into binary frameproof codes, as the
following Theorem shows.

Theorem 4.33. [BS98, Theorem III.4] Let ` = 16c2 log(n). Then there exists a binary
c-frameproof code of length ` and cardinality n.

Proof. Let C1 = Γ2(2c) and let C2 be the c-frameproof code of cardinality n from Lemma 4.27.
Then C = C1 ◦ C2 is a binary c-frameproof code of length `1`2 = 16c2 log(n) and cardinality
n.

This last construction is quite a good construction: it uses a small alphabet, it can be used for
any number of colluders, and it has a relatively short codelength. Also, the upper bounds on
the cardinality of a frameproof code give n ≤ qO(`/c) while this construction gives n = qO(`/c

2).
It is still a factor c off in the exponent of q, but it is quite close to the upper bound for not too
large c.

4.3 Secure frameproof codes

First of all, let us consider the traceability of secure frameproof codes; how well can we accuse
traitors, using secure frameproof codes? For the case c = 2, as we saw in the Introduction, we
get the following result.

Theorem 4.34 (Traceability of 2-secure frameproof codes). [STW00, Theorem 2.3] Let C be
a 2-secure frameproof code, and let ~y be a forgery generated by some coalition C. Then either
(1) at least one guilty user can be identified, or (2) a set of three users can be identified, two of
which must be guilty.

Proof. Suppose we are given such a code and a forgery. One can then check for all coalitions
of size (at most) two whether they could have generated ~y. Let G be this set of coalitions.
Obviously |G| ≥ 1, while if |G| = 1 (all members of) this coalition must be guilty. If |G| = 2,
then since C is 2-secure frameproof, these two coalitions contain a common user, which must be
guilty. For |G| ≥ 3, suppose that no single user can be caught, i.e. there is no common member
of all coalitions. Then, since each pair still has one user in common, the first three coalitions
have users say {1, 2}, {1, 3}, {2, 3}. Since any other coalition must have a user in common with
all these three coalitions, all other coalitions are also a subset of {1, 2, 3}. So this set {1, 2, 3}
can be identified, which must contain two traitors.

31

The above problem, of finding a subset of all the users with a rate of traitors as high as possible,
can be formulated in terms of pairwise intersecting sets as follows.

Definition 4.35. Let U = {1, . . . , n} and let S = {S1, . . . , Sm} be a collection of subsets of U ,
such that |Si| = t for each i, and |Si∩Sj | ≥ 1 for each i, j. Then the set S is called a t-pairwise
intersecting set. Furthermore, let k be fixed and unknown and let Sk ⊆ U be the kernel of
U . The problem is to find a subset W ⊆ U such that W contains as many elements from Sk as
possible, and as few elements from U \ Sk as possible. Writing RSk(W) = |W ∩ Sk|/|W | and
R = maxW⊆U mink∈[m]RSk(W), the problem is to find R and preferably a W achieving this rate
R.

This problem relates to the secure frameproof codes in the following way. Take U to be the set
of users, and let S = S(~y) contain those coalitions of size (at most) c that could have generated
some obtained forgery ~y. Then the set S is a c-pairwise intersecting set. We now take as the
kernel the unknown set of real colluders C that generated ~y. The problem is to find a subset of
the users that contains as many guilty and as few innocent users as possible.

The above problem was solved for c = 2, since then one can either find a subset K ′ of size 1
containing 1 traitor or of size 3 containing at least 2 traitors (i.e. the rate of guilty users is either
1 or 2/3). For c ≥ 3 we conjecture the following result, which seems to be new, but also seems
hard to prove.

Conjecture 4.36. There exist c-secure frameproof codes C which achieve no better rate than
c

c2−c+1
= 1

c +O(1
c2

). In particular, if C is a code that is only known to be c-secure frameproof,

then one generally cannot achieve a better success rate than 1
c (1 + 1/c).

Evidence. We will give evidence that there exists a c-pairwise intersecting set such that the
highest rate achievable is probably c/(c2 − c+ 1). As we make no assumptions on the structure
of the code, the collection of coalitions that could have generated a forgery could be anything.
Thus we can choose it any way we want. This then proves that there exists a c-secure frameproof
code for which one cannot necessarily do better than 1

c (1 + 1/c).

Consider the projective plane of order c−1, and identify the points as users and lines as coalitions
of users. Then all lines (coalitions) contain c points, and any two lines intersect in exactly one
point. If the coalitions formed by these lines were indeed exactly the coalitions able to produce
some forgery ~y, then we have a system of (c− 1)2 + (c− 1) + 1 = c2 − c+ 1 users, c of which are
guilty. Also we conjecture that there is no smaller subset of points/lines known to contain a
higher rate of traitors than this whole projective plane; removing one point could reduce the
number of traitors by 1 (two lines go through this point, i.e. if one of these lines is the line
corresponding to the actual coalition, then the number of traitors is reduced by one), removing
two points could reduce the number of traitors by 2 (exactly one line goes through any two
points, i.e. if this line were the coalition, two colluders would be removed), and analogously,
removing k points such that

(
k
2

)
> c+ 1 could reduce the number of traitors by 3 (at least one

line contains at least 3 of these points), et cetera. Therefore the highest rate achievable for this
c-pairwise intersecting set is conjectured to be c/(c2 − c+ 1).

The above of course does not imply that any c-secure frameproof code has bad traceability, as
for instance c-IPP codes are also c-secure frameproof codes. However, if we do not know more
about this code than that it is c-secure frameproof, then we cannot draw any better conclusions
than that we can get an accusation rate of O(1/c) as c tends to infinity.

Similar to the frameproof codes, we can get the following results about error-correcting codes
and code concatenation for secure frameproof codes. In this case only a very specific class

32

Alice 1 1 1 0 0 0 0
Bob 1 0 0 1 1 0 0
Charlie 1 0 0 0 0 1 1
Dave 0 1 0 1 0 0 1
Eve 0 1 0 0 1 1 0
Fred 0 0 1 0 1 0 1
George 0 0 1 1 0 1 0

Forgery 1 1 1 1 1 1 1

Table 4.9: The 3-secure frameproof code based on the Fano plane. Each column/row represents a line in
the Fano plane. One can verify that the only 7 size-3 coalitions that could have generated the forgery are
exactly the 7 lines from the Fano plane, and since all lines in the Fano plane intersect, it follows that the
code is 3-secure frameproof. However, given the forgery above, the distributor cannot accuse a subset of
users V ⊆ U such that |V ∩ C|/|V | > 3

7 for any possible coalition C.

Alice Bob Charlie

Dave

EveFred

George

Figure 4.1: The Fano plane, i.e. the projective plane over F2 consisting of 7 lines (going through 3
points each) and 7 points. Here we associate points with users, and lines with possible coalitions of size
(at most) 3 that could have generated the forgery ~y = (1, 1, 1, 1, 1, 1, 1). The best achievable rate of guilty
users is obtained by accusing the set of all 7 users. Then at least 3 of them are guilty, giving a success
rate of 3

7 .

of error-correcting codes translates to secure frameproof codes, as can be seen below, while
concatenation of two secure frameproof codes again gives a secure frameproof code.

Theorem 4.37. [EC01, Proposition 1] A binary constant weight linear error-correcting code
with parameters [` = 4i− 1, k, d = 2i] satisfying that any two distinct codewords agree in exactly
bd/2c positions, is a 2-secure frameproof code of length ` and cardinality 2k.

Theorem 4.38. [EC01, Section 5] Let C1 be a 2-secure frameproof code of length `1, cardinality
n1 over an alphabet of size q1, and let C2 be a 2-secure frameproof code of length `2, cardinality
n2 over an alphabet of size q2, and let n1 > q2. Then C = C1 ◦ C2 is a 2-secure frameproof code
of length `1`2, cardinality n1 over an alphabet of size q1.

As for lower bounds, we only mention the following results, which hold for general c and q.

Theorem 4.39. [SZ08, Theorem 7] If a c-secure frameproof code of length ` exists, then
n ≤ qd`/ce + 2c− 2 (i.e. ` = Ω(c logq(n))).

Theorem 4.40. [SZ08, Corollary 14] If a c-secure frameproof code of length ` exists, then
n ≤ (2c2 − 3c+ 2)qd`/(2c−1)e − 2c2 + 3c− 1 (i.e. ` = Ω(2c logq(n))).

33

4.4 IPP codes

Finally we turn our attention to the class of IPP codes, which are the weakest deterministic
static schemes to have full traceability. As mentioned in the Introduction, the jump from weak or
no traceability to being able to trace at least one user with certainty carries a big disadvantage,
which is stated and now also proven below.

Theorem 4.41. Let C be a c-IPP code with alphabet size q and cardinality n > c. Then q > c.

Proof. Let ~x1, . . . , ~xc+1 be distinct codewords from C. Since these are more codewords than
there are symbols in the alphabet, on every position i there exists some symbol αi that occurs
at least twice among {(~x1)i, . . . , (~xc+1)i}. Let ~y be the codeword defined by yi = αi. Then every
subset of c users of these c+ 1 users could have generated ~y, since on any position at least one
of their codewords matches ~y. Therefore any of these c + 1 users could theoretically still be
innocent, hence there exists no tracing algorithm σ such that both σ(~y) ⊆ C and σ(~y) 6= ∅.

The strongest and most important other Theorem known for IPP codes is the following, which
gives lower and upper bounds for the cardinality of a c-IPP code with given ` and q. Similar to
the section on frameproof codes, we use the notation I(c, `, q) to denote the maximum cardinality
of a c-IPP code of length ` and alphabet size q.

Theorem 4.42. [AS04, Theorem 2.1] Let k =
⌊
c2/4

⌋
+ c = Θ(c2). Then there exist two

functions f1, f2 of c such that for every ` and q, [f1(c)q]
`/k < I(c, `, q) < f2(c)q

d`/ke.

Corollary 4.43. Any c-IPP code satisfies ` = Ω(c2 logq(n)).

Most work in literature on IPP codes has been focused on calculating or estimating I(c, `, q)
for several values of c, ` and q. The first work, [HVLLT98], focused on I(2, 3, q) and I(2, 4, q).
For I(2, 3, q), it was first proven that I(2, 3, q) ≥ 3q

2 −O(1) [HVLLT98, Example 2], which was
strengthened to I(2, 3, q) ≥ 2q −O(

√
q) [HVLLT98, Example 3], and finally a construction was

given proving I(2, 3, q) ≥ 3q −O(
√
q), which for completeness is given below.

Lemma 4.44 (Constructive lower bound for I(2, 3, q)). [HVLLT98, Example 4] Let k =
max{i ∈ N : i(i+ 2) ≤ q} ≈ √q. Then I(2, 3, q) ≥ 3k2 = 3q −O(

√
q).

Proof. Let the alphabet be partitioned into three subsets S = {1, . . . , k} (small numbers),
M = {k + 1, . . . , 2k} (medium numbers) and L = {2k + 1, . . . , k2 + 2k} (large numbers). Then
|S| = |M | = k and |L| = k2. Let the code C be the union of the following three codes:

C1 = {(s1, s2, ks1 + (k + s2)) | s1, s2 ∈ S} ⊆ S × S × L (4.22)

C2 = {(m1, ks1 +m1, s1) | s1 ∈ S,m1 ∈M} ⊆M × L× S (4.23)

C3 = {(k(m1 − k) +m2,m1,m2) | m1,m2 ∈M} ⊆ L×M ×M (4.24)

Each of the codes contains k2 codewords, so C has 3k2 codewords, and obviously the three
codes are disjoint. Now suppose ~c contains a large coordinate. Then this coordinate uniquely
determines a traitor, since every large coordinate occurs exactly once on each of the three
positions. If on the other hand ~c contains no large coordinates, then we know the two sets Ci
where the traitors came from (e.g. if ~c ∈ S ×M ×M , then the traitors are from C1 and C3),
and for one of these two codes we know two coordinates (e.g. if ~s ∈ S ×M ×M , then the last
two coordinates came from C3). These two coordinates together uniquely identify one of the
traitors.

34

(S) (S) (L) (M) (L) (S) (L) (M) (M)

Alice 1 1 5 Eve 3 5 1 Isaac 5 3 3
Bob 1 2 6 Fred 3 7 2 John 6 3 4
Charlie 2 1 7 George 4 6 1 Kelly 7 4 3
Dave 2 2 0 Henry 4 0 2 Linda 0 4 4

Table 4.10: The 2-IPP code from Theorem 4.44 of length 3. Here we took q = 8 so that k = 2 and
n = 12. The alphabet is partitioned as Q = S ∪M ∪ L with S = {1, 2},M = {3, 4}, L = {5, 6, 7, 8}, and
for consistency of alphabets starting at 0 we map the symbol 8 to 0.

As for upper bounds on I(2, 3, q), the paper [HVLLT98] first proves that I(2, 3, q) ≤ q2 [HVLLT98,
Equation (7)], while later on it shows that I(2, 3, q) ≤ 3q − 1 [HVLLT98, Theorem 1], making
the bound and the above construction almost tight.

For c = 2 and a fixed codelength of ` = 4, [HVLLT98] gives a construction achieving a cardinality
of n = q

√
q −O(1). Later, in [AFS01], a better construction was given with n = Ω(q2), while

simultaneously proving an upper bound of n = O(q2) [AFS01, Theorem 2.5, Theorem 3.4].

For c = 2 and variable ` and q, Hollmann et al. gave a construction for prime powers q ≥ `−1 with
I(2, `, q) ≥ qd`/4e [HVLLT98, Corollary 1], while a same order upper bound on the cardinality
was also given as I(2, `, q) ≤ 3qd`/4e [HVLLT98, Theorem 5].

In the case of c = 3, some results were also obtained explicitly, with a construction of cardinality
n = 5q − o(q) in [AS04, Theorem 3.1] for ` = 5, while for ` = 6 an upper bound was given on
the cardinality as n = o(q2) [AS04, Theorem 3.2].

Similar to the case of frameproof codes, the case ` ≤ c was completely solved, as [AS04, Lemma
4.1] shows that I(c, `, q) = q for those cases. The case ` = c+ 1 was also studied in the same
paper, resulting in I(c, c+ 1, q) = q + 2q

2c−3 − o(q) [AS04, Theorem 4.2].

Finally, not surprisingly we also get results through code concatenation and by using error-
correcting codes, as follows.

Theorem 4.45. [HVLLT98, Theorem 2] Let C1 be a 2-IPP code of length `1, cardinality n1
over an alphabet of size q1, and let C2 be a 2-IPP code of length `2, cardinality n2 over an
alphabet of size q2, and let n1 > q2. Then C = C1 ◦ C2 is a 2-IPP code of length `1`2, cardinality
n1 over an alphabet of size q1. In other words, I(2, `1`2, q) ≥ I(2, `1, I(2, `2, q)).

4.5 Summary

In this chapter we investigated deterministic static schemes, which are in a sense the most
intuitive schemes. With these schemes one tries to find a construction for a code such that
after receiving the forgery, always at least one traitor can be identified. We started off with a
weaker class of codes, which only guarantees that users cannot be framed. These frameproof
codes have relatively short codelengths (linear in c, logarithmic in n) and require only small
alphabet sizes (binary). A slightly stronger class is the class of secure frameproof codes, which
are codes that have the added property that any coalition that could have possibly generated
the forgery actually contains a traitor. These codes also require a codelength linear in c and
logarithmic in n, and one can still use a binary alphabet for these codes. When making the
jump from this partial traceability to full traceability codes, i.e. IPP codes, we saw that the
minimum codelength increases by a factor c (quadratic in c), and, more importantly, we can no
longer use small alphabets: the minimum alphabet size is then c+ 1. Especially for large c this
is a big downside to using IPP codes.

35

36

Chapter 5

Probabilistic static schemes

Citations: For writing this chapter, the following articles were used: [AT09], [BT08], [BS98],

[FGC08], [FPF09], [HM09b], [HM09a], [KSCS07], [Ker10], [NFH+09], [PSS03], [Sch03],

[Sch04], [Sch06], [Sch08], [SS10], [SVCT06], [SKC08], [SKSC09], [Tar03], [Tar09], [Tar10],

[Yac01].

5.1 Introduction

In the previous chapter we considered deterministic static schemes. We saw that if we ask for
no traceability or only weak traceability, then we can construct codes with a binary alphabet.
However, when switching from this weak traceability to complete, deterministic traceability,
i.e. always being able to identify at least one colluder, we saw that the required alphabet size
suddenly becomes c+ 1. So somewhere between weak traceability and full traceability, there is a
jump from small alphabets to large alphabets.

In this chapter we consider schemes with traceability that is stronger than the traceability of
frameproof or secure frameproof codes, but weaker than the traceability of IPP codes. The
schemes we consider in this chapter are allowed to have a small error margin in the process of
tracing traitors. Instead of requiring a code to make no error in the accusations, we may use an
accusation algorithm that is allowed to make a mistake with probability at most ε, where the
probability is calculated over all possible fingerprinting codes that could have been used. Since
making a mistake can essentially mean two different things, we first define these two types of
errors, regarding soundness and completeness of the scheme. Here we explicitly refer to the
scheme as a pair (C, σ), where C is the fingerprinting code and σ is the tracing algorithm.

Definition 5.1 (Soundness, completeness). Let (C, σ) be a fingerprinting scheme and let c ≥ 2
and ε1, ε2 > 0. Then we say the scheme (C, σ) is a c-sound scheme with ε1-error (also
c-frameproof scheme with ε1-error, or the scheme has a false positive probability of
at most ε1 against c colluders, or if c is implicit we say the scheme is ε1-sound) if, for any
fixed coalition C and pirate strategy ρ : C 7→ ~y, the probability over all possible codes C that the
accusation algorithm σ accuses at least one innocent user is bounded from above by ε1. Similarly,
we say the scheme (C, σ) is a c-complete scheme with ε2-error, (or the code has a false
negative probability of at most ε2 against c colluders, or if c is implicit we say the scheme is
ε2-complete) if, for any fixed coalition C and pirate strategy ρ, the probability over C that the
accusation algorithm does not accuse any guilty users is bounded from above by ε2.

In other words, soundness with error ε1 implies that with probability at least 1− ε1 no innocent
user will be accused, while completeness with error ε2 implies that with probability at least

37

1− ε2, at least one of the guilty users will be accused. Note that these probabilities are taken
for a fixed coalition C and fixed pirate strategy ρ, but not for fixed codewords assigned to users
and not for a fixed forgery generated by a coalition.

Since we want to have schemes that satisfy both these requirements, we sometimes also say a
scheme is c-secure with (ε1, ε2)-error to indicate that the scheme is ε1-sound and ε2-complete
against c colluders.

The rest of this chapter is devoted to reviewing results from literature about c-secure schemes
with (ε1, ε2)-error. First, in Section 5.2, we look at theoretical lower bounds on the codelength of
any c-secure, (ε1, ε2)-error scheme. Then, in Section 5.3, we look at the Boneh-Shaw scheme,
introduced in [BS98], and we show why this scheme is not optimal. In Section 5.4 we then look
at the Tardos scheme, which (up to a constant factor) achieves the best known lower bound
for the asymptotic case of c→∞. For this last scheme we also look at several improvements
suggested in literature, which further reduce the codelength. Finally, in Section 5.5 we summarize
the results from this chapter.

5.2 Lower bounds

First of all, we present lower bounds from literature on `, given c, ε1 and ε2. A lot of work has
been done in this area, by e.g. Boneh and Shaw in [BS98], Peikert et al. in [PSS03], Tardos
in [Tar03], Amiri and Tardos in [AT09] and Huang and Moulin in [HM09b], [HM09a]. We will
discuss the results in order of strength, with the weakest but easiest to prove bounds first.

5.2.1 Linear in c

The following Theorem, with a not so advanced proof, shows that the codelength has to be at
least linear in the number of colluders, and logarithmic in 1/(cε1), if ε1 = ε2.

Theorem 5.2. [BS98, Theorem VI.1] Let ε2 ≥ ε1 > 0, and let c ≥ 2. If a binary fingerprinting
scheme (C, σ) with codelength ` is ε1-sound and ε2-complete against up to c colluders, then
` ≥ 1

2(c− 3) ln(1/cε1) = Ω(c ln(1/cε1)).

Proof. We prove that for any assignment of codewords of length ` < 1
2(c− 3) ln(1/cε1) to c+ 1

users, we can construct a word ~y which could have been generated by any coalition of c of these
users with probability at least ε1. This then proves that any code of this length cannot be both
ε1-sound and ε2-complete, since this word ~y cannot be traced back to a guilty user with a high
enough success probability by any tracing algorithm.

Let ~x1, . . . , ~xc+1 denote the c + 1 codewords assigned to c + 1 users. Let B(k) be the set of
fingerprint positions such that exactly k of the c + 1 users have a 1 there. Then obviously∑c

k=0 |B(k)| = `, hence
∑c−2

k=2 |B(k)∪B(k+ 1)| ≤ 2` < (c− 3) ln(1/cε1), so that for at least one
2 ≤ k0 ≤ c− 2 we have |B(k0) ∪B(k0 + 1)| ≤ log(1/cε1). We now define the word ~y as yi = 0 if
on position i the c+ 1 users have at most k0 ones, and yi = 1 otherwise. We will now show that
any coalition of c users can guess this word with probability at least ε1.

1

Let C be a coalition of c of these c+ 1 users. First of all, the coalition guesses k0 by guessing
uniformly at random between 2 and c− 2. This guess is correct with probability 1/(c− 3) > 1/c.
Now let i be a position that is detectable by the coalition. The coalition then knows that there
are, say, k ones among their codewords, hence i ∈ B(k) ∪ B(k + 1). If k < k0, then i ∈ B(k)
for some k ≤ k0, so the coalition puts a 0 on these positions, which matches with yi. Similarly,

1Note that this word ~y can indeed be generated by any coalition of size c, for which we need that 2 ≤ k0 ≤ c−2.

38

if k > k0, then i /∈ B(k) for any k ≤ k0, so that the coalition can put a 1 there, knowing that
it will match ~y on this position. Finally, if k = k0, the coalition does not know whether they
should choose yi = 0 or yi = 1. Then the coalition simply chooses yi uniformly at random, so
that P[yi = 1] = P[yi = 0] = 1/2. So with probability (1/2)|B(k0)∪B(k0+1)| ≥ (1/2)ln(1/cε1) = cε1,
all these bits are guessed correctly, so that the probability of both guessing k0 right and then
also guessing ~y right is at least ε1, as claimed.

While the above Theorem was quite easy to prove, the bound it provides is not tight, as we will
see below.

5.2.2 Quadratic in c

As it turns out, one can improve upon the lower bound of Boneh and Shaw given above by a
factor c. The following Theorem given by Peikert et al. in [PSS03] shows that the codelength is
always at least quadratic in c. The small price we pay is that we need some obscure condition
on the size of ln(1/ε1) for this Theorem to hold.

Theorem 5.3. [PSS03, Theorem 5.1] Let C be a c-secure scheme with ε = ε1 = ε2 error, and
let ln(1/ε) be sufficiently large. Then ` = Ω(c2 ln(1/cε)).

Sketch of the proof. The proof given in [PSS03] first describes a universal strategy, to be used
against any fingerprinting scheme. On any position i, let k be the number of ones a coalition of
size c sees on that position. For k ≤ bc/2c we now let rk = βk2 with β such that rbc/2c = 1/2,
while for bc/2c < k ≤ c we define rk = (1− rc−k). The strategy is then to output a 1 on position
i with probability rk and a 0 with probability 1− rk. Since r0 = 0, rc = 1 (marking assumption)
and 0 ≤ rk ≤ 1 this is a feasible pirate strategy.

Using this strategy, Peikert et al. then go on to show that with sufficiently large probability, a
coalition can generate ideal target words. These are words which are ideal for pirates, in the sense
that for the distributor it is then impossible (or at least sufficiently hard) to trace the traitors.
This is similar to the approach used in the proof of Boneh and Shaw’s lower bound: one tries to
find a word ~y and c+ 1 users such that any c-subset of these users could have generated this
word with sufficiently large probability. Then any of these users can be innocent with sufficiently
large probability, hence no single user can be accused with high enough certainty.

In the same year, another quadratic bound was given by Tardos in [Tar03]. This bound also loses
the factor c inside the logarithm in both Boneh and Shaw’s Theorem and Peikert’s Theorem,
and this Theorem does not need that ε1 is sufficiently small. However, now we do need the small
requirement that ε1 is really smaller than ε2/c. This last requirement is usually satisfied, since
one usually allows more room for error in not catching pirates than in catching innocent users.

Theorem 5.4. [Tar03, Theorem 4] Let ε1, ε2 > 0 such that ε1 < (ε2/c)
a for some a > 1, and

let c ≥ 3. If a fingerprinting code C of length ` is ε1-sound and ε2-complete against c colluders,
then ` = Ω(c2 ln(n/ε1)), where the factor in the big Omega is some constant depending solely on
a.

Sketch of the proof. Whether it is a coincidence or not, the proof given by Gabor Tardos from
the Rényi Institute in Hungary uses the seldom used (”esoteric”, to quote Tardos) measure of
distance known as the Rényi divergence. Similar to the lower bounds above, Tardos first provides
a uniformly used pirate strategy. Given that there are k ones among the c bits seen on position
i, Tardos also defines biases rk for choosing yi = 1. Where Peikert et al. used rk = βk2, Tardos

39

chooses the strategy ρ by P[yi = 1] = rk = 3k2 − 2k3. A similar strategy ρ′ is then defined for
when only c− 1 of these c users collude.

Now suppose that some scheme manages to accuse one of the guilty users, say user 1, with
sufficiently large probability. Then P[1 ∈ σ(ρ(X))] > ε2. Now we consider the strategy ρ′

deployed by the other c − 1 users of the coalition. Then also we have P[1 ∈ σ(ρ′(X))] ≤ ε1,
as user 1 is now an innocent user. Tardos then continues by calculating the Rényi divergence
between the distributions of (ρ(X), X, σ) and (ρ′(X), X, σ). These are then shown to be too
close to eachother for P[1 ∈ σ(ρ(X))] > ε2 and P[1 ∈ σ(ρ′(X))] ≤ ε1 to hold if ` is too small or if
the relation between ε1 and ε2 is not satisfied. This then finally proves the result.

These quadratic bounds in c are asymptotically tight, as we will later see constructions matching
this quadratic bound. However, the above Theorems do not care about the constants, e.g. we
still do not know whether ` ≥ c2 ln(n/ε), or ` ≥ 1000c2 ln(n/ε), or ` ≥ (1/1000)c2 ln(n/ε). In
the next subsection we will investigate results regarding this final constant.

5.2.3 Finding the final constant

Let d∗` denote the constant such that there exist schemes with length ` = d∗`c
2 ln(1/ε1) (for

asymptotically large c) but there exist no schemes with a shorter codelength. In other words, d∗`
is the critical constant for which secure schemes just exist. The paper [HM09b] investigated this
d∗` , and concluded that ln(2) ≤ d∗` [HM09b, Theorem 4.2] and d∗` ≤ π2 ln(2)/2 [HM09b, Theorem
4.3], so that d∗` ∈ [ln(2), π2 ln(2)/2] ≈ [0.69, 3.42]. Later the paper [AT09] claimed to have solved
the exact value of d∗` , by stating the following Theorem. However, no proof was given, and no
extended version of the paper including a proof has appeared to date.

Theorem 5.5. [AT09, Theorem 6.3] Let d∗` be as described above. Then d∗` = 2 ln(2) ≈ 1.39.

All these bounds are based on an information-theoretic analysis: if a codelength of less than
2 ln(2)c2 ln(1/ε1) is used in any probabilistic scheme, then the distributor will not get enough
information from the coalition to have enough certainty about guilt of the pirates. This holds
regardless of the scheme or code used. The fact that d∗` = 2 ln(2) however only tells us that with
unlimited resources (time, calculation power) there should exist a secure scheme with such a
codelength. So these bounds may not be very practical, as in practice the time and calculation
power available are limited. But knowing this constant does give us ultimate targets, and it tells
us how far schemes are from the absolute minimum codelength.

5.2.4 Non-binary alphabets

Very recently, the work in the CREST project at the Eindhoven University of Technology done
by Dion Boesten and Boris Skoric has resulted in a paper about the capacity of non-binary
fingerprinting channels. This can be compared to the work on d∗` by Huang and Moulin, but for
q-ary alphabets with q > 2. This was done for the restricted digit model; a choice we did not
have to make for the binary alphabet. The following result about d∗`,q, the optimal constant for
q-ary alphabets, is proven in this paper.

Theorem 5.6. [BS11, Theorem 3] Let d∗`,q be as described above for q-ary alphabets. Then
d∗`,q = 2 ln(q)/(q − 1).

This last result shows that one can really get better results when switching to a bigger alphabet.
For example, a symbol from an alphabet of size 8 can be represented by log2(8) = 3 bits, by

40

identifying symbols with triples of bits. So one might expect that the codelength needed will
decrease by a factor log2(q) when going from a binary to a q-ary alphabet, i.e. d∗`,q/d

∗
`,2 =

1/ log2(q). However Theorem 5.6 says that d∗`,q/d
∗
`,2 = log2(q)/(q − 1) which is really smaller

than 1/ log2(q). For example, using a 64-ary alphabet, one does not have d∗`,64 = d∗`,2/6 ≈ 0.23
but d∗`,64 = 6d∗`,2/63 ≈ 0.13. This gain can intuitively be explained by the fact that the bigger
the alphabet we use, the more important the choice of the model becomes. For example, for the
binary alphabet there is no difference between the restricted digit model and the arbitrary digit
model. Then pirates are as strong in the restricted digit model as in the arbitrary digit model.
For bigger alphabets, these models are no longer the same, and then using the restricted digit
model actually restricts the pirates in their abilities.

5.3 The Boneh-Shaw scheme

5.3.1 Introduction

In this section we will investigate the Boneh-Shaw scheme, which was introduced and analyzed
in 1998 by Dan Boneh and James Shaw. This scheme is intuitive, but not very efficient and
therefore not the most practical choice. However, this is one of the milestones in collusion-
resistant fingerprinting schemes. This scheme was the first probabilistic collusion-resistant
scheme with a length polynomial in the number of colluders, and between 1998 and 2003 this was
also the best probabilistic static fingerprinting scheme known. Furthermore, later we will again
run into the cubic Boneh-Shaw scheme, since Tassa also used this scheme in his paper [Tas05].

First of all, let us give a motivational example of how the (cubic) Boneh-Shaw scheme roughly
works, and why. Consider the following code C0, also given in Table 5.1.

C0 = {(111; 111; 111), (000; 111; 111), (000; 000; 111), (000; 000; 000)} (5.1)

block 1︷ ︸︸ ︷ block 2︷ ︸︸ ︷ block 3︷ ︸︸ ︷
Alice 1 1 1 1 1 1 1 1 1
Bob 0 0 0 1 1 1 1 1 1
Charlie 0 0 0 0 0 0 1 1 1
Dave 0 0 0 0 0 0 0 0 0

Table 5.1: The fingerprinting code C0 for 4 users with length ` = 9.

Let C be the code formed by applying a random permutation π to the columns of the code
C0. We will not consider this permutation for the analysis, as after receiving ~y we can simply
invert the permutation, but we do use the fact that users do not know this permutation π. This
permutation π thus belongs to the secret data described in the model of (static) fingerprinting
schemes.

Now consider the coalition formed by all users but the second user. Then on the first six positions,
the colluders see (111; 111), (000; 000), (000; 000) respectively. Since a random permutation is
used, the colluders cannot distinguish the first three positions from the second three positions.
In fact, the only user who can distinguish between those positions is user 2, as that is the only
user with differences on those positions. The scheme is based on this observation: if user 2 is
innocent, then in the forgery ~y the first three symbols will be similar to the second three symbols.
And similarly, if in the forgery there is an odd balance in the number of ones for the first three
and second three positions, then most likely user 2 was included in the strategy to form the
codeword.

41

Suppose for example that the colluders use the majority strategy. Then the output will be
~y = (000; 000; 111). As the number of ones on the first three positions is the same as on the
second three positions, user 2 is most likely innocent. However, there is a clear difference between
the second three and the last three positions, which suggests user 3 is guilty.

Consider instead the scapegoat strategy, where ~y = ~xj for some member j of the coalition. If
j = 1, then from the ones on the first three positions, one can deduce that user 1 must be part
of the coalition. If j = 3, then we get the same as with the majority strategy, and user 3 is likely
guilty. If j = 4, then since ~y7 = ~y8 = ~y9 = 0 one knows that the last user is guilty.

A general reasoning why someone will get suspected goes as follows. On the first three positions,
only user 1 sees ones, so unless there are only zeroes, we already have a suspect. Now if these
are indeed all zeroes, then we also expect the second three symbols to be zeroes; if there is a
significant difference between these two adjacent groups of three symbols, then we know user 2
is most likely part of the coalition. So either user 2 is suspected, or these three symbols also
contain many zeroes. This can be continued for the third three positions, so that either these
last three symbols are also mostly zeroes, or user 3 is a suspect. But now, since user 4 is the only
one with zeroes on these last three symbols, this would imply that this last user is suspicious. So
since at the start we expect only zeroes, at the end we expect only ones and inbetween we don’t
expect big changes in the numer of zeroes and ones between adjacent groups of symbols, one of
our expectations will not come true, and someone will be suspected. In other words, the number
of ones seen in each block should start at 0, end at 3 and should not grow too fast inbetween.
With sufficiently large block sizes this then leads to a contradiction, which means someone will
get accused.

5.3.2 The cubic Boneh-Shaw scheme

Let us now define the scheme properly, and analyze its properties. First of all, we use d to
denote the duplication factor, which was 3 in the above example. The above construction then
leads to a code, where user j gets the codeword ~xj with (~xj)i = 0 for the first d(j − 1) positions
and (~xj)i = 1 for the remaining d(n− j) positions. Note that this gives a total of ` = d(n− 1)
positions. We write Bk for the kth block of d positions. Identifying user j (for 2 ≤ j ≤ n− 1)
then relies on comparing blocks Bj and Bj+1, while identifying users 1 and n relies solely on
counting the number of ones in the blocks B1 and Bn−1 respectively.

We define the accusation algorithm as follows. Let wi be the weight of ~y on block Bi, i.e. wi is
the number of ones on the positions d(i− 1) + 1 up to di in ~y. If w1 > 0 then obviously user 1 is
accused and guilty, and if wn−1 < d then the last user must be guilty and gets accused. For the
other users, let ai = (wi−1 + wi)/2 be the average number of ones in the blocks Bi−1 and Bi.
We now accuse user j if the following condition holds:

wj − wj−1 > 2

√
aj
2

log

(
2n

ε1

)
. (5.2)

For this scheme, we then get the following result about soundness.

Theorem 5.7. [BS98, Lemma V.2] The probability of accusing any innocent user in the cubic
Boneh-Shaw scheme is at most ε1/n. Hence with probability at least 1− ε1, no innocent users
are accused.

Proof. Suppose j is an innocent user. Obviously if j = 1 (or j = n), then for the coalition the
marking assumption applies on the first (last) d positions, so that w1 = 0 (wn−1 = d). So users
1 and n are never falsely accused.

42

Now suppose 2 ≤ j ≤ n− 1 is an innocent user, and suppose that the forgery ~y contains a ones
on the blocks Bj ∪ Bj−1. Since the permutation is uniformly random, the ones in these two
blocks are uniformly random spread throughout the two blocks Bj and Bj−1. Let Y denote the
number of ones in block Bi−1, given that there are a ones in the two blocks together. Then the
distribution of Y is given as P[Y = r] =

(
d
r

)(
d
a−r
)
/
(
2d
a

)
. Obviously Y has mean a/2.

Let X denote a binomial random variable over d experiments with success probability 1/2. Then
P[Y = r] ≤ 2P[X = r] for any r. Hence for any r we get P[d/2 − Y > r] ≤ P[d/2 −X > r] ≤
2e−2r

2/d, where the last inequality comes from the Chernoff bound for binomial random variables
with success probability 1/2. Taking r =

√
aj log(2n/ε1)/2 the bound thus gives us:

P

[
d/2− Y >

√
aj
2

log

(
2n

ε1

)]
≤ 2e− log(2n/ε1) = ε1/n. (5.3)

So user j is declared guilty with probability at most ε1/n. Therefore the probability that no
innocent user is declared guilty is at least (1− ε1/n)n ≥ 1− ε1, which proves the result.

While the above proves soundness, we also have to consider the completeness property. As
mentioned in the Introduction of this chapter, the code is built in such a way that there have to
be two adjacent blocks somewhere which are really different, i.e. the numbers of ones in both
blocks are far apart. We will prove that if d is sufficiently large, the set of accused users is not
empty, as was also proven in [BS98, Lemma V.3]. This then implies that with probability at
least 1− ε1, the set of accused users is not empty and includes no innocent users. Therefore the
set of accused users must contain at least one guilty user, so the completeness property then
holds with error probability at most ε2 = ε1.

Theorem 5.8. [BS98, Theorem V.1] Using d = 2n2 log(2n/ε1), the set of accused users is
always non-empty. Hence the probability of not accusing any guilty users is at most ε2 = ε1.

Proof. Suppose no one is accused. First we prove by induction that for all i it must then
hold that wi ≤ 2i2 log(2n/ε1). This then implies that wn−1 ≤ 2(n − 1)2 log(2n/ε1), while
wn−1 = 2n2 log(2n/ε1), since user n − 1 is not accused. This then gives a contradiction and
completes the proof. So it only remains to show that wi ≤ 2i2 log(2n/ε1) for all i.

First of all, since user 1 is not accused we know that w1 = 0 ≤ 2 · 02 log(2n/ε1), as required.
Now suppose wi ≤ 2i2 log(2n/ε1). Then wi+1 = ai+1 − wi ≤ ai+1/2 +

√
ai+1 log(2n/ε1)/2,

since user i was not accused. Substituting ai+1 = wi + wi+1 for both occasions of
ai+1, and again using the bound on wi, we can isolate wi+1 as wi+1 ≤ 2i2 log(2n/ε1) +
2
√

2(2i2 log(2n/ε1) + wi+1) log(2n/ε1). If we now suppose that wi+1 = 2r2 log(2n/ε1) for some
r, then r2 ≤ i2 +

√
r2 + i2. From this it follows that r ≤ i+ 1, so that wi+1 ≤ 2(i+ 1)2 log(2n/ε1)

as was to be proven.

The scheme described above thus gives a code of length d(n − 1) = 2n2(n − 1) log(2n/ε1) =
O(n3 log(n/ε1)) and an efficient accusation algorithm, which satisfies the soundness and com-
pleteness properties with error probabilities bounded by ε1 = ε2.

5.3.3 The quartic Boneh-Shaw scheme

In the previous subsection we discussed a cubic scheme with length ` = O(n3 log(n/ε1)). However,
this codelength is cubic in the number of users, rather than the number of pirates. Especially
with large systems with many users and only few colluders, almost any scheme with a length
polynomial in c instead of n would be better than the above scheme. Here we will discuss

43

an extension of the cubic scheme into a quartic scheme, but with the n replaced by a c. The
codelength then becomes O(c4 log(n/ε1)) which is much better than O(n3 log(n/ε1)) for c� n.

The quartic Boneh-Shaw scheme is constructed as follows. Let C1 be the cubic Boneh-Shaw as
described in the previous subsection, with length `1 and consisting of n1 codewords. We now
concatenate this code with a uniformly random code C2 over an alphabet of size n1. This code
has some codelength `2 and cardinality n. The concatenated code C thus consists of n codewords
of length `1`2, where each codeword is made up of `1 random codewords from C1.
The accusation algorithm is now slightly different. For each of these `1 components of the
longer codeword, we run the accusation algorithm from the cubic Boneh-Shaw scheme, and we
arbitrarily choose one of the accused users from this run as the accused user for this component.
We do this for every component, thus getting `1 accusations of a single user. Putting these `1
accusations together, we get a word σ1σ2 . . . σ`1 with each σi a number (user) between 1 and
n. We now look for the word ~x ∈ C which matches this word σ1 . . . σ`1 on the most positions.
If there is a tie, we just arbitrarily choose one. Finally, we accuse the user associated to this
codeword ~x. For this scheme we then get the following result.

Theorem 5.9 (Quartic Boneh-Shaw scheme). [BS98, Theorem V.5] Let n, c, ε1 be given.
The quartic Boneh-Shaw scheme with parameters n1 = 2c, `1 = 2c log(2n/ε1) and d =
2n21 log(4n1`1/ε1) = 8c2 log(8c`1/ε1) accuses exactly one user, who is guilty with probability
at least 1− ε1, provided that the forgery was generated by a coalition of at most c users. This
scheme has a codelength of:

` = `1d(n1 − 1) = 32c4
(

1− 1

2c

)
log

(
2n

ε1

)
log

(
16c2

ε1
log

(
2n

ε1

))
(5.4)

= O
(
c4 log

(
n

ε1

)
log

(
c

ε1

))
. (5.5)

Sketch of the proof. Using the analysis for the cubic Boneh-Shaw scheme, we know that for every
segment one of the coalition members will be accused with probability at least 1− ε1/2`1, as
the factor inside the logarithm of d is now 2`1 times bigger compared to the cubic Boneh-Shaw
scheme. So the probability that on all positions a coalition member will be accused is at least
1− ε1/2.

Now since there are c users and `1 segments, we know that if indeed all segments are translated
to coalition members, then at least one of the coalition members must match the output word
~σ = σ1 . . . σ`1 on at least `1/c positions. Any random word, belonging to an innocent user, is
expected to match ~σ on `1/n1 = `1/2c positions. The probability that such a word does match
~σ on more positions than all members of the coalition, thus on at least `1/c positions, can again
be bounded using the Chernoff bound. This probability is then at most ε1/2n. Therefore the
probability that all innocent users match ~σ on less than `1/c positions is at least 1− ε1/2. So
with probability at least (1 − ε1/2)(1 − ε1/2) ≥ 1 − ε1, all segments are correctly translated
to coalition members, and no innocent users have as many as `1/c matches with ~σ. So with
probability at least 1− ε1, the algorithm outputs a coalition member.

Note that the above scheme achieves only ` = O(c4 log(n/ε1) log(c/ε1)), while the lower bound
says ` = Ω(c2 log(1/ε1)). So the above scheme has a length which is roughly the square of
the length of the theoretical lower bound. Also, the constant in front of c4 is 32, so even for,
say, c = 5, the length is already at least 20000, where we did not even take into account the
logarithmic factors. With n = 106 and ε1 = 10−3 for example, log(n/ε1) ≈ 30 and log(1/ε1) ≈ 10,
so that the codelength is at least six million. Compared to 2 ln(2)c2 log(n/ε1) < 1000, this is of
course terrible.

44

5.3.4 Limitations

One way to get better schemes would be to retrace our steps in the Boneh-Shaw scheme, and
see if we can improve the scheme in some way, e.g. by sharpening the analysis or making better
parameter choices. This was done in several papers, e.g. [Yac01] and [Sch06]. However, the
scheme’s c4 is too big, and in 2003 the paper [PSS03] actually proved that there are limitations
to the Boneh-Shaw scheme. One can shave off at most a factor c, as the following Theorem
states.

Theorem 5.10. [PSS03, Theorem 4.1] Let C be a Boneh-Shaw code, and let σ be the associated
Boneh-Shaw accusation algorithm. If the scheme (C, σ) is secure against c colluders with at most
ε1 = ε2 error, then ` = Ω(c3 log(n/cε1)).

Even with modifications, such as using other types of columns, we will not get close to the bound
of Ω(c2 log(n/ε1)), as the following Theorem states. If we only use a limited number of different
columns for our code, and roughly follow the Boneh-Shaw scheme, then we will always need a
codelength of roughly Ω(c3 log(n/ε1)). Note that even for k = `, i.e. all columns different, the
result is still in the order of c3. This means that we need a different way of accusing users, and
possibly a completely different scheme altogether, if we want to get shorter codelengths.

Theorem 5.11. [PSS03, Theorem 6.1] Let C be a Boneh-Shaw-like multiplicity code with k
types of columns, each repeated d times. Let σ be some accusation algorithm, such that the
security of the scheme depends entirely on the secrecy of the permutation π applied to the columns
of the code, and not on the secrecy of the columns themselves. Then if (C, σ) is secure against c
colluders with at most ε1 = ε2 error, then ` = Ω(c3 log(n/cε1)/ log(k)). In particular, as k ≤ ` is
at most polynomial in c, we always have ` = Ω(c3 log(n/cε1)/ log(c)).

The above shows us that there are serious limitations to the Boneh-Shaw scheme. To get close
to the lower bounds, we will need to use a completely different approach.

5.3.5 Summary

The Boneh-Shaw scheme is a relatively simple and intuitive scheme, and it is the first probabilistic
static scheme to get a codelength polynomial in c and log(1/ε1). The cubic scheme achieves a
codelength O(c3 log(n/ε1)), provided that n = O(c). If n� c we can use the quartic scheme to
get a codelength of ` = O(c4 log(n/ε1) log(c/ε1)). However, the factor c4 grows quadratically as
fast as the lower bound of c2. Even for small c, for instance c = 5, the factor c4 is already 25
times bigger than c2. Also taking into account the large constant 32 in front of the c4, this gives
a length of more than 500 times more than the sharpest lower bound for c = 5, and even larger
factors for larger c.

While one can look for improvements to reduce the codelength, the results by Peikert et al.
in [PSS03] are most interesting. These results show that there are limitations to the scheme in
general, and that no improvement can get the codelength below ` = Ω(c3 ln(n/ε1)). Therefore
we did not spend time investigating such improvements, as it will not get us the results we want
anyway, i.e. a codelength quadratic in the number of colluders.

Concluding, we can say that investigating the scheme was a useful exercise, but we also learned
that we have to do something different if we want to get closer to the theoretical optimal
codelength.

45

5.4 The Tardos scheme

5.4.1 Introduction

In this section we will discuss the Tardos scheme, which was proposed in 2003 by Gabor Tardos.
As this scheme is very important, both theoretically and practically, we will spend quite some
time on explaining the ideas behing this scheme. Also, this scheme is the basis for all four
chapters of Part II, so of all schemes discussed in this literature, this is by far the most important
one for us.

First of all, In this Introduction we will consider a sketch of the Tardos fingerprinting scheme
to get a feeling for how the scheme works and why it should work. In this sketch we will leave
out most of the details, to emphasize the bigger picture. For this, we first look at a sketch of
the construction, which roughly explains how the code is generated and how the accusation
algorithm works. Then we will discuss why this scheme should intuitively work. Finally we look
at an ”example”, with certain chosen (small) parameters, to illustrate the scheme and to get an
idea of how the scheme works in practice.

In the next subsection we will then look at the original Tardos scheme, presented in [Tar03].
Then in Subsection 5.4.3 we will look at the improvements suggested in various papers to make
the Tardos scheme even better. Then finally we will wrap up with a summary of the results
from this section.

5.4.1.1 Construction

So first let us look at a sketch of the construction. We assume c and n are known, and we
assume we have been given some upper bounds ε1, ε2 on the false positive/negative probabilities
respectively.

For the initialization, we first take ` sufficiently large, and we choose a parameter δ > 0 sufficiently
small and a parameter Z between certain upper and lower bounds. The value of δ is close to
zero, while Z grows linearly in c and ` grows quadratically in c.

Then for every fingerprint position 1 ≤ i ≤ `, we pick a bias pi from [δ, 1 − δ] from some
distribution function F = Fc. All these biases are selected independently. The distribution F is
biased towards δ and 1− δ, e.g. the probability of getting p1 ∈ [δ, δ+ 0.02] is bigger than getting
p1 ∈ [0.49, 0.51]. The associated probability density function f is also symmetric around 1/2, i.e.
f = fc satisfies f(1/2− a) = f(1/2 + a) for all a.

Now comes the codeword generation. For this, we select the ith symbol of user j randomly from
a Bernoulli distribution with bias pi. In other words, with probability pi we take Xji = 1, and
with probability 1− pi we take Xji = 0. Note that Xji and Xki are independent for j 6= k, and
that also Xji and Xjk are independent for all i 6= k. This means that the codewords of different
users are independent, and that the different codeword positions are independent. Especially
the former is an important and very useful property of this code, since it basically rules out any
attempts of framing users.

After the above steps the initialization and codeword generation is completed. Table 5.2
summarizes this process graphically. First the values pi are generated, and then the symbols
Xji are chosen, resulting in a code C.
After sending out the codewords and receiving some forgery ~y, the distributor calculates scores
Sj for all users. This Sj can be seen as a sum of accusation scores Sji over all positions i, i.e.
Sj =

∑
i Sji, where the values of Sji depend solely on pi, the pirate output yi and the user

symbol (~xj)i = Xji. The value Sj measures the user’s suspicion in our system; if Sj is large,

46

p1 ∼ F p2 ∼ F . . . p` ∼ F
(position 1) (position 2) . . . (position `)

Alice X1,1 ∼ Ber(p1) X1,2 ∼ Ber(p2) . . . X1,` ∼ Ber(p`)
Bob X2,1 ∼ Ber(p1) X2,2 ∼ Ber(p2) . . . X2,` ∼ Ber(p`)
...

...
...

. . .
...

Zoey Xn,1 ∼ Ber(p1) Xn,2 ∼ Ber(p2) . . . Xn,` ∼ Ber(p`)

Table 5.2: The construction of the Tardos fingerprinting code. For each column i, the distributor first
selects a value pi from the distribution F . Then for each user he generates a symbol (either a 0 or a 1)
by using pi as the probability of taking a 1. Hence each user’s codeword is independent, all columns are
independent, and in row i we will roughly see n · pi ones and n · (1 − pi) zeroes. The code X and the
values pi are kept secret from the users.

then he is suspicious, while if Sj is negative or small, we do not suspect user j. If pi = δ is
small and yi = 1 (which is unlikely), then the value Sji is a big positive number if (~xj)i = 1 and
Sji is a small negative number if (~xj)i 6= 1. If on the other hand yi = 0 (which is much more
likely, given pi is small), then Sji is a big negative number if (~xj)i = 0 and Sji is a small positive
number if (~xj)i 6= 1. Table 5.3 below summarizes these different contributions to Sj for different
values of pi, Xji and yi.

2

As mentioned, this score Sji is independent of any information from other users. The total score
Sj only depends on the values of pi, the vector ~y and the vector ~xj . This is in particular useful
for proving the soundness property, as ~y and ~xj are independent if user j was not part of the
coalition.

After calculating these scores, the distributor simply accuses all those users whose scores are too
high, namely all users j with Sj > Z. Therefore Z is also known as the accusation threshold or
offset.

5.4.1.2 Discussion

Now that we have looked at an outline of the scheme and understand a bit how the scheme
works, some questions arise, such as: Why does the scheme above make sense? And in particular,
two related questions are important: Why are no innocent users accused? and Why will at least
one guilty user be accused? We will intuitively discuss these two questions below, disregarding
most of the mathematical computations done later to prove the security of this scheme.

For the first question, we use a fact that we have not mentioned before, namely that E[Sji] = 0
and Var[Sji] = 1, provided that Xji and yi are independent. So then for innocent users j we have

E[Sj] = E[
∑`

i=1 Sji] =
∑`

i=1 E[Sji] = 0. For the variance we use that pi and pi′ are independent

for i 6= i′, so that Var[Sj] = Var[
∑`

i=1 Sji] =
∑`

i=1 Var[Sji] = `, hence the standard deviation is
given by σ =

√
`. As we will see later Tardos chooses Z > 2

√
`, and one can imagine that most

of the data of some distribution will be at most two standard deviations from the mean. So the
probability that Sj > Z, i.e. an innocent user j is accused, will be reasonably small.

For the second question, note that by taking the distribution for the pi’s such that f(p) is large
for pi close to 0 and 1, we ensured that quite often all pirates receive the same symbol and the
marking assumption applies. If this is the case, then the scores of all pirates will increase, so the
total coalition score S =

∑
j∈C Sj will increase a lot. In other cases, where pirates are allowed

2In the original Tardos scheme, the score Sji was taken as 0 for the top half of the table. Intuitively the scores
Sji should be as in the table, making the accusation scores symbol-symmetric. This is one of the improvements,
discussed in 5.4.3.

47

pi ≈ δ pi ≈ 1/2 pi ≈ 1− δ
(low rate of ones) (medium rate of ones) (high rate of ones)

Xji = 0 Sji ≈ +
√
δ ≈ +0 Sji ≈ +1 Sji ≈ +

√
1/δ ≈ +20

√
c

yi = 0 Most users have a 0 on
this position, including
the user and the out of
the pirates. This could
very well be a coincidence,
so the user is only slightly
suspicious, and Sji con-
tributes a small positive
amount to the sum Sj .

Some users have the sym-
bol 0 here and some have
a 1 here. The fact that
user j and the forged copy
match on this position
makes the user somewhat
suspicious. Therefore Sji
is a positive number.

Most users have a 1 here,
but user j and the pirated
copy have a 0 here. This
is a very unlikely coinci-
dence, so this definetely
makes the user suspicious.
So Sji is a big positive
number, making the user
a strong suspect.

Xji = 1 Sji ≈ −
√

1/δ ≈ −20
√
c Sji ≈ −1 Sji ≈ −

√
δ ≈ −0

yi = 0 Most users have a 0 on
this position, including
the pirates, but user j has
a 1 here. This certainly
pleads for his innocence,
so Sji is a big contribu-
tion to proving the user’s
innocence.

Some users have a 0 here
and some users have a 1
on this position. The fact
that user j has a 1 here
while the pirated copy has
a 0 here pleads for the
user, so Sji is a negative
number.

Most users have a 1 here,
including user j, while
the pirated copy has a
0 on this position. This
makes the user a bit
less suspicious, so Sji is
a small contribution to
proving his innocence.

Xji = 0 Sji ≈ −
√
δ ≈ −0 Uji ≈ −1 Sji ≈ −

√
1/δ ≈ −20

√
c

yi = 1 Most users have a 0 here,
including user j, while
the pirated copy has a
1 on this position. This
makes the user a bit less
suspicious, but this could
also be a coincidence. So
Sji is only a small nega-
tive contribution to prov-
ing his innocence.

Some users have a 0 here
and some users have a 1
on this position. The fact
that user j has a 0 here
while the pirated copy has
a 1 here pleads for the
user, so Sji is a negative
number.

Most users have a 1 on
this position, including
the pirates, but user j has
a 0 here. This certainly
pleads for his innocence,
so Sji is a big negative
number, i.e. a big con-
tribution to proving the
user’s innocence.

Xji = 1 Sji ≈ +
√

1/δ ≈ +20
√
c Sji ≈ +1 Sji ≈ +

√
δ ≈ +0

yi = 1 Most users have a 0 here,
but user j and the pirated
copy have a 1 here. This
is a very unlikely coinci-
dence, so this definetely
makes the user suspicious.
So Sji is a big positive
number, making the user
a strong suspect.

Some users have a 0 and
some have a 1 here. The
fact that user j and the
pirated copy match on
this position makes the
user somewhat suspicious.
Therefore Sji is a positive
number.

Most users have a 1 on
this position, including
user j and the pirates.
This could very well be
a coincidence, so the user
is only slightly suspicious,
and Sji only contributes
a small positive amount
to the sum Sj .

Table 5.3: The increase in the score of user j on position i, for several values of Xji, yi and pi. If
Xji = yi then Sji will be positive, while for Xji 6= yi the value of Sji will be negative. Furthermore the
contribution of Sji to the total sum is determined by how rare the occurring event is, where rare events
cause larger contributions than commonly occurring events.

48

0.0 0.2 0.4 0.6 0.8 1.0

® probability pi

®
sc

or
e

S
ji

Figure 5.1: The score Sji for yi = 0 as a function of pi, for Xji = 0 (top) and for Xji = 1 (bottom).

Because of the cutoff parameter δ, the value of Sji is bounded from above and below by −
√

(1− δ)/δ ≤
Sji ≤ +

√
(1− δ)/δ, where

√
(1− δ)/δ = O(

√
c).

0.0 0.2 0.4 0.6 0.8 1.0

® probability pi

®
sc

or
e

S
ji

Figure 5.2: The score Sji for yi = 1 as a function of pi, for Xji = 1 (top) and for Xji = 0 (bottom).
Because of the relation Sji(yi, Xji, pi) = Sji(1− yi, 1−Xji, 1− pi), the graph looks very similar to the
graph for the case yi = 0.

49

to choose their output, the sum S may decrease slightly. However, the decrease in S on those
positions is really small in most cases, regardless of whether the pirates output a 0 or a 1. In
fact, if the number of ones seen on some position i is exactly pi, then both yi = 0 and yi = 1
lead to no change in S. Only if e.g. they receive many ones while pi is small, and they output a
0 will their score decrease a lot. But that happens only rarely, and it doesn’t compensate for the
increase in S on the positions where the marking assumption applies.

In other words, the reason why pirates will get accused in this scheme is that (a) the total
score S of all users added together increases a lot on undetectable positions where the marking
assumption applies, and (b) there is no way for pirates to make up for this by decreasing S on
detectable positions. Eventually S will get arbitrarily large, so that at some point S > cZ. This
then implies that for at least one coalition member j his score Sj must be larger than Z, so that
at least one of the pirates is accused.

We will see in the next subsection that we can actually prove that, no matter which strategy the
pirates choose, the probability of accusing at least one of the guilty users is always very high
and that the probability of accusing innocent users is sufficiently small. For now, we will first
continue with a rough example of how the whole Tardos scheme works for some small parameter
choices.

5.4.1.3 Example

Let us illustrate the scheme through a very small example, where we simply choose some small
parameters. Let the system contain n = 5 users, and let us use a codelength of ` = 6. We
choose the accusation offset as Z = 1, and randomly choose the biases as ~p = (p1, . . . , p6) =
1
10(8, 7, 2, 1, 5, 3).3 Suppose the matrix X was randomly selected as:

X =

1 1 0 0 0 1
0 1 0 0 1 0
1 0 0 0 1 1
1 0 1 0 0 0
1 1 0 0 1 0

(5.6)

This corresponds to the following distribution of codewords.

p1 = 0.8 p2 = 0.7 p3 = 0.2 p4 = 0.1 p5 = 0.5 p6 = 0.3

Alice 1 1 0 0 0 1
Bob 0 1 0 0 1 0
Charlie 1 0 0 0 1 1
Dave 1 0 1 0 0 0
Eve 1 1 0 0 1 0

Table 5.4: The Tardos fingerprinting code for 5 users and ` = 6, as described by X and ~p above.

Then the initialization and codeword generation is complete. Let us now consider some values
for the forgery ~y, and see which users are accused in those cases.4

3These biases have to be taken according to F , which depends on t, which in turn depends on c, which has not
even been specified. For the sake of simplicity we will ignore these issues and just assume that these pi’s take on
the given nice round values and that ` = 6.

4For the accusation score function we will use the accusation function suggested in [SKC08], which is the most
intuitive and has the best performance.

50

• Let ~y = (0, 1, 1, 0, 0, 1). Then ~S = (S1, . . . , S5) ≈ 1
10(25, 8,−17, 7,−17) so only user 1 is

accused. Note that ~x1 and ~y match on four out of the six positions. Similarly, the users
with the lowest scores (users 3 and 5) have the least matches with ~y, namely two.

• Let ~y = (1, 0, 0, 1, 1, 0). Then ~S ≈ 1
10(−25,−8, 17,−7, 17) so users 3 and 5 are accused.

Note that the scores are the same as for ~y = (0, 1, 1, 0, 0, 1), except for the multiplication
with −1. Also note that users 3 and 5 could not even have generated this codeword
together. And since there is a 1 on the fourth position and none of the users have a 1 there,
no coalition could ever have generated this codeword under our assumptions. Still, the
’probability’ that users 3 and 5 are guilty is high enough for the scheme to accuse them.

• Let ~y = (0, 0, 0, 0, 0, 0). Then ~S ≈ 1
10(−8, 18,−7, 10,−7) and users 2 and 4 are accused.

In the original Tardos scheme with Tardos’ original accusation function, we would have
~S = ~0 always if ~y = ~0. So in the original scheme, pirates would get away if they were able
to generate the all-zero codeword. But the probability of being able to generate this word
is
∏`
i=1(1− pci), which quickly converges to zero as quite many values pi are close to 0.

• Let ~y = (1, 1, 1, 0, 0, 0). Then ~S ≈ 1
10(5,−19,−37, 30, 6) and user 4 is accused.

• Let ~y = (1, 1, 0, 0, 0, 0). Then ~S ≈ 1
10(15,−9,−27,−10, 16) and users 1 and 5 are accused.

Notice the big changes in the scores compared to the previous ~y. For instance, the score of
user 4 went from the highest score by far to the second lowest score.

• Let ~y = (0, 0, 1, 0, 0, 0). Then ~S ≈ 1
10(−18, 8,−17, 50,−17) and user 4 is accused. The

score of user 4 is extremely high, which can be explained by the fact that ~y and ~x4 match
on five of the six positions.

Of course, in reality ` is much bigger than 6 and Z is much larger as well, so that the code
achieves given maximum error rates. For example, in the original Tardos scheme, if c = 2 and
ε1 = ε2 = e−1 ≈ 0.37, then already ` ≥ 400, regardless of n. So even though the Tardos scheme
achieves a good asymptotic code length, this does not mean that the value of ` is ”small”. The
codelength is still quite large, even for small values of c and large allowed error probabilities ε1
and ε2.

5.4.1.4 Summary

We hope that through this Introduction, the reader could acquaint himself with the Tardos
scheme, and that the reader now has a feeling for how the scheme works and why it works.
In the next subsection we will continue with the original Tardos scheme given in 2003, and
analyzing in detail why the scheme works. This analysis will be quite lengthy, but we hope that
by first reading this subsection, the reader is able to see the bigger picture and will be able to
follow the analysis from the next subsections more easily.

5.4.2 The original Tardos scheme

In this subsection we will discuss the Tardos fingerprinting scheme given in [Tar03], and prove
that Tardos’ fingerprinting code is c-secure with (ε1, ε2)-error for his choice of parameters. We
first give the full construction, with the parameters given explicitly. Then we will prove that the
probability of accusing one or more innocent users is bounded by ε1. Finally we will prove that
the probability of not accusing any guilty users is at most ε2.

51

5.4.2.1 Construction

The complete construction, with the parameters chosen according to the original Tardos scheme,
is as follows. Let n, c ≥ 2 be given integers, and let ε1 ∈ (0, 1) be the desired upper bound for
the error rate. Let us also write k = dlog(n/ε1)e. Then the Tardos fingerprinting scheme works
as follows.

1. Initialization

(a) Take ` = 100c2k as the code length, and take the parameters δ and Z as δ = 1/(300c)
and Z = 20ck. Compute δ′ = arcsin(

√
δ) such that 0 < δ′ < π/4.

(b) For each fingerprint position 1 ≤ i ≤ `, choose pi independently from [δ, 1 − δ]
according to the distribution given by the following cumulative distribution function
F :

F (p) =
2 arcsin(

√
p)− 2δ′

π − 4δ′
. (5.7)

The probability density function f of this distribution is given by:

f(p) =
1

(π − 4δ′)
√
p(1− p)

. (5.8)

This function is biased towards δ and 1− δ and symmetric around 1/2.

2. Codeword generation

(a) For each position 1 ≤ i ≤ ` and for each user 1 ≤ j ≤ n, select the entry Xji of the
code matrix X independently by Xji ∼ Ber(pi).

3. Accusation

(a) For each position 1 ≤ i ≤ ` and for each user 1 ≤ j ≤ n, calculate the score Sji
according to:

Sji = Sji(yi, (~xj)i, pi) =

+
√

(1− pi)/pi if Xji = 1, yi = 1;

−
√
pi/(1− pi) if Xji = 0, yi = 1;

0 otherwise.

(5.9)

(b) For each user 1 ≤ j ≤ n, calculate the total accusation sum Sj =
∑`

i=1 Sji. User j is
accused if and only if Sj > Z.

5.4.2.2 Results

With this construction, we can prove the following results.

Theorem 5.12 (Soundness). Let j ∈ U be an arbitrary (innocent) user. Let C ⊆ U \ {j} be a
coalition of any size not containing j, and let ρ be any strategy employed by this coalition. Then

P[j ∈ σ(ρ(X))] < ε1/n. (5.10)

Therefore the probability of not accusing any innocent users is at least 1− ε1, so the scheme is
ε1-sound for any c.

52

Theorem 5.13 (Completeness). Let C ⊆ U be a coalition of size at most c, and let ρ be any
pirate strategy used by the coalition C. Then

P[C ∩ σ(ρ(X)) = ∅] < (ε1/n)
√
c/4. (5.11)

Therefore if (ε1/n)
√
c/4 ≤ ε2, the probability of accusing at least one guilty user is at least 1− ε2

and thus the scheme is c-complete with at most ε2 error.

Note that Theorem 5.13 is not sufficient for proving ε2-completeness for any ε2 ≥ ε1, if ε
√
c/4−1

1 >
n
√
c/4. This can occur for small values of c and large values of ε1. However for c ≥ 16 we

certainly have (ε1/n)
√
c/4 ≤ ε1, while for ε1 = 1/n we have (ε1/n)

√
c/4 ≤ ε1 for any c ≥ 4. In

the extended version of Tardos’ paper, Tardos proves the following, slightly stronger statement,
which proves ε2-completeness for any c ≥ 4 and any ε2 ≥ ε1.

Theorem 5.14 (Completeness). Let C ⊆ U be a coalition of size at most c, and let ρ be any
pirate strategy used by the coalition C. Then

P[C ∩ σ(ρ(X)) = ∅] < (ε1/n)c/4. (5.12)

In particular, for any c ≥ 4 we get P[C ∩ σ(ρ(X)) = ∅] < ε1, while for ε1 ≤ 1/n we get
P[C ∩ σ(ρ(X)) = ∅] < ε1 for any c ≥ 2.

The proof of this latter Theorem given in Tardos’ extended paper is very similar to the proof of
Theorem 5.13, but this proof involves even more bookkeeping than is already the case in the
proof of Theorem 5.13. Therefore we will prove the weaker statement and only give a sketch
of the proof of Theorem 5.14. We refer the reader to the extended version of [Tar03] for the
complete proof of the latter Theorem.

Together Theorems 5.12 and 5.14 imply the following Corollary about the secureness of the
original Tardos fingerprinting scheme.

Corollary 5.15 (Secureness). Let c ≥ 4, n ≥ c and ε1 be given, and take ε2 = ε1. Then the Tar-
dos fingerprinting scheme given above is (c, ε1, ε1)-secure and has a length of ` = O(c2 log(n/ε1)).

Next we will prove the claimed results. We will mainly follow the proofs given in the paper by
Tardos.

5.4.2.3 Soundness

In this subsubsection we will prove Theorem 5.12, which says that no innocent users are accused
with probability more than ε1/n. For this proof we will use expectations, probabilities, the
Markov inequality and some simple bounds on the function ex.

Proof of Theorem 5.12. Let n, c, ε1, pi, Xji be given according to the Tardos fingerprinting
scheme, and let ~y be some forgery generated by some coalition not containing some fixed
user j. Then j ∈ σ(~y) if and only if Sj > Z, so proving P[Sj > Z] < ε1/n proves the theorem.

First, consider P[Sj > Z]. Using Markov’s inequality, which says that P[X > a] < E[X]/a for
positive random variables X, and using the fact that eαx is a strictly increasing positive function
for α > 0, we get

P[Sj > Z] = P[eαSj > eαZ] < e−αZE[eαSj]. (5.13)

53

Next, consider E[eαSj]. Using some simple rules for the expectation, we can write

E[eαSj] = E

 ∏

i:yi=1

eαSji

 =

∏

i:yi=1

E
[
eαSji

]
. (5.14)

We now investigate E[eαSji], for α = 1/(10c). Since αSji ≤ α
√

(1− δ)/δ ≤ α
√

1/δ ≤
√

3 < 1.74
we can use the bounds 1 + x ≤ ex ≤ 1 + x+ x2 for x = αSji and x = α, since these inequalities
hold for all x < 1.79. Also using the fact that Sji has expectation 0 and variance 1, we get

E[eαSji] ≤ E
[
1 + αSji + α2S2

ji

]
= 1 + αE[Sji] + α2E[S2

ji] = 1 + α2 ≤ eα2
. (5.15)

So we get an upper bound for P[Sj > Z] as

P[Sj > Z] < e−αZE[eαSj] = e−αZ
∏

i:yi=1

E
[
eαSji

]
≤ e−αZ

(
eα

2
)|{i:yi=1}|

≤ e−αZ+α2`. (5.16)

Filling in α = 1/(10c), Z = 20ck, ` = 100c2k gives that −αZ + α2` = −k, so using k = dn/ε1e
we get

P[Sj > Z] < ε1/n, (5.17)

which was to be proven. The probability that no one gets accused is thus bounded by

P[σ(ρ(X)) ⊆ C] =
∏

j /∈C

(1− P[j ∈ σ(ρ(X))]) ≥
∏

j /∈C

(1− ε1/n) ≥ (1− ε1/n)n ≥ 1− ε1. (5.18)

This shows that the scheme is ε1-sound for any c.

Note that we have proven that for any coalition C of any size, and for any strategy used by this
coalition, no innocent user is accused with probability more than ε1/n. For proving that the
code is (c, ε1)-sound, we only had to prove that for coalitions of size at most c, the probability
of accusing an innocent user is at most ε1/n. What we have proven is something much stronger,
namely that the code is frameproof with at most ε1-error against coalitions of any size. This is a
big advantage of using this scheme, as the Tardos scheme is basically fully frameproof.

Also notice that we have not used the definition of F in this proof. In other words: for any
distribution function F on [δ, 1− δ], Theorem 5.12 holds. Only for the proof of completeness do
we need the definition of F .

5.4.2.4 Completeness

Next we discuss why at least one guilty user is accused in the original Tardos fingerprinting
scheme. The proof of Theorem 5.13 is given below, and it is much more lengthy than the proof
of soundness. It involves a lot of bookkeeping, which does not really help us understand the
scheme. For completeness (pun intended) we give the proof here, but unless the reader wants
to verify that the author made no mistake he can skip the proof and continue to the more
interesting sections.

Note that the proof nowhere uses that the values of pi are secret. In fact, the proof only
upperbounds the scores on detectable positions. So even if a coalition were to know all values of
pi, the scheme would still be secure; as long as the coalition adheres to the marking assumption.

Note also that in this proof there is not much advanced mathematics needed. Again, the Markov
inequality is used (now for e−βS instead of e+αS , with positive β), and then a lot of work is done
to bound the resulting expectation value. This again involves working with probabilities and
expectations and the bounds for ex, and it involves some combinatorics, simple integrations and
some other simple bounds.

54

Proof of Theorem 5.13. Without loss of generality, we assume that the coalition consists of the
first c users. We also start by introducing some more notation. We write xi = xi(X) =

∑c
j=1Xji

for the number of ones in column i of the code matrix X. Similar to the notation used before,
we write ~p = (p1, . . . , p`), and we write qi =

√
(1− pi)/pi and S =

∑
j∈C Sj . Writing out this

last expression gives

S =
∑

j∈C
Sj =

c∑

j=1

∑̀

i:yi=1

Sji =
∑̀

i=1

yi(xiqi − (n− xi)/qi). (5.19)

Since for S > cZ, it clearly follows that there is at least one j such that Sj > Z and thus user j
is accused, we can bound the probability that no guilty user is accused by

P[C ∩ σ(ρ(X)) = ∅] ≤ P[S < cZ] = P[e−βS > e−βcZ] < eβcZE~y,X,~p[e−βS], (5.20)

where β > 0, and where we have also used some techniques which we have already seen in the
proof of Theorem 5.12. Now let us consider the expectation value E~y,X,~p[e−βS]. First, we can
rewrite this to

E~y,X,~p
[
e−βS

]
=
∑

X=X0

E~y,~p
[
e−βSP[X = X0]

]
, (5.21)

where the summation runs over all {0, 1}-matrices X. We can easily calculate P[X = X0], since
this probability is simply equal to the product of the probabilities that each entry of X is equal
to the corresponding entry of X0 (since all entries are independent). For position (j, i), this
probability is pi if (X0)ji = 1 and 1− pi if (X0)ji = 0. So writing this out, and writing out S
gives

E~y,X,~p
[
e−βS

]
=
∑

X=X0

E~y,~p

[
e−βS

∏̀

i=1

p
xi(X0)
i (1− pi)c−xi(X0)

]
(5.22)

=
∑

X=X0

E~y,~p

[∏̀

i=1

pxii (1− pi)c−xi exp (−βyi(xiqi − (c− xi)/qi))
]

(5.23)

=
∑

X=X0

∏̀

i=1

Eyi,pi
[
pxii (1− pi)c−xi exp (−βyi(xiqi − (c− xi)/qi))

]
. (5.24)

Now since each pi is identically (and independently) distributed with distribution function F , we
can also replace the expectation over pi by the expectation over p, where p also has distribution
F , and write q =

√
(1− p)/p. Then

E~y,X,~p
[
e−βS

]
=
∑

X=X0

∏̀

i=1

Eyi,p
[
pxi(1− p)c−xi exp (−βyi(xiq − (c− xi)/q))

]
. (5.25)

Since yi is either 0 or 1, we introduce N0,xi = Ep [pxi(1− p)c−xi] and N1,xi =
Ep [pxi(1− p)c−xi exp (−β(xiq − (c− xi)/q))]. Since for xi = 0 it follows that yi must be 0,
and for xi = c it follows that yi = 1, we write max∗(N0,xi , N1,xi) to denote N0,xi if xi = 0, N1,xi

if xi = c and the maximum of N0,xi and N1,xi if 0 < xi < c. This is then an upperbound for
Ep [pxi(1− p)c−xi exp (−βyi(xiq − (c− xi)/q))]. So

E~y,X,~p
[
e−βS

]
≤
∑

X=X0

∏̀

i=1

max ∗(N0,xi , N1,xi). (5.26)

55

Since all terms are nonnegative, we can interchange the summation and product, since∑
a

∏
b f(a, b) ≤ ∏

b

∑
a f(a, b) for f ≥ 0. We can also replace the summation over {0, 1}-

matrices X by a summation over values for xi, the contributions to the summation are the same
if the values of xi are the same. This gives

E~y,X,~p
[
e−βS

]
≤
∏̀

i=1

c∑

xi=0

(
c

xi

)
max ∗(N0,xi , N1,xi). (5.27)

Since the summations over the xi are all the same, we can replace the xi by x and replace the
product by an exponentiation, so that we get

E~y,X,~p
[
e−βS

]
≤
(

c∑

x=0

(
c

x

)
max ∗(N0,x, N1,x)

)`
(5.28)

≤
(

c∑

x=0

(
c

x

)
Mx

)`
, (5.29)

where M0 = N0,0, Mc = N1,c, Mx = max(N0,x, N1,x) for 0 < x < c, and Nb,x =
Ep [px(1− p)n−x exp (−βb(xq − (c− x)/q))] for b ∈ {0, 1} and 0 ≤ x ≤ n.

Now we will get an upper bound for the summation, by inspecting Mx. We now choose β =
√
δ/c

so that −β(xq − (c− x)/q) ≤ −β(0q − (c− 0)/q) = βc/q ≤ βc/√1− p ≤ βc/
√
δ < 1.79, and we

can again use the bound eu ≤ 1 +u+u2 for u = −β(xq− (c−x)/q). Writing γ = xq− (c−x)/q
this gives

exp (−βb(xq − (c− x)/q)) ≤ 1− βγ + β2γ2. (5.30)

Multiplying by px(1− p)c−x and taking the expectation on both sides gives

N1,x ≤ N0,x − βN2,x + β2N3,x, (5.31)

where N2,x = Ep[px(1− p)c−xγ] and N3,x = Ep[px(1− p)c−xγ2] ≥ 0.

We will now focus on the term N2,x. For this we will finally make real use of the choice of our
distribution F for choosing the variables pi. First, using the definition of the expected value, we
get

N2,x =
1

π − 4δ′

∫ 1−δ

δ

px(1− p)n−x
(
xq − n−x

q

)

√
p(1− p)

dp. (5.32)

Since f(p) = p′ if and only if f−1(p′) = p, with f−1 defined as f−1(p′) = sin2(p′), we can also get
p by taking r ∈R [δ′, π/2−δ′], and take p = sin2(r). Then substituting r for p in the integral gives
1− p = cos2(r), q =

√
(1− p)/p = cos(r)/ sin(r), 1/q = sin(r)/ cos(r), dp = 2 sin(r) cos(r)dr, so

that we get

N2,x =
1

π/2− 2δ′

∫ π/2−δ′

δ′
sin2x(r) cos2(n−x)(r)

(
x cos(r)

sin(r)
− (n− x) sin(r)

cos(r)

)
dr. (5.33)

The primitive of the integrand is given by I(r) = 1
2 sin2x(r) cos2(n−x)(r) so we get

N2,x =
I(π/2− δ′)− I(δ′)

π/2− 2δ′
=
δc−x(1− δ)x − δx(1− δ)c−x

π − 4δ′
, (5.34)

56

where we have used that sin2(δ′) = δ and cos2(δ′) = 1− δ. So for 0 < x < n we get

−βN2,x ≤
βδx(1− δ)c−x

π − 4δ′
(> 0), (5.35)

and

Mx ≤ N0,x +
βδx(1− δ)c−x

π − 4δ′
+ β2N3,x, (5.36)

while for x = 0 we have M0 = N0,0 and for x = c we have

Mn = N1,n ≤ N0,n − βN2,n + β2N3,n = N0,n +
βδn − β(1− δ)c−x

π − 4δ′
+ β2N3,n. (5.37)

Now we look at the summation over Mx again, using the bounds we just found. Then

c∑

x=0

(
c

x

)
Mx ≤

c∑

x=0

(
c

x

)
N0,x −

β(1− δ)c − β∑c
x=1

(
c
x

)
δx(1− δ)c−x

π − 4δ′
+ β2

c∑

x=0

(
c

x

)
N3,x. (5.38)

For the summation over N0,x, we use the fact that
(
c
x

)
px(1− p)c−x exactly counts the probability

of having x successes in c trials, so that summing over all values of x, from 0 to c, gives exactly
1. So

c∑

x=0

(
c

x

)
N0,x =

c∑

x=0

(
c

x

)
Ep[px(1− p)c−x] = Ep

[
c∑

x=0

(
c

x

)
px(1− p)c−x

]
= Ep[1] = 1. (5.39)

For the summation over N3,x we get

c∑

x=0

(
c

x

)
N3,x =

c∑

x=0

(
c

x

)
Ep

[
px(1− p)c−x

(
xq − c− x

q

)2
]

(5.40)

= Ep

[
c∑

x=0

(
c

x

)
px(1− p)c−x

(
xq − c− x

q

)2
]
. (5.41)

Note that for a specific x in this summation, the first part of the formula again calculates the
probability of getting x successes in c trials. The latter part then calculates the accusation
value Sj , as we saw before (count q for a success, count −1/q for a failure). If we let Uj ,
1 ≤ j ≤ c, denote i.i.d. random variables with P[Uj = q] = 1− P[Uj = −1/q] = p, then this last
expectation is exactly equal to E[(

∑c
j=1 Uj)

2]. Since the variables Uj are independent, and each

has expectation 0 and variance 1, we have E[(
∑c

j=1 Uj)
2] = c, so that

c∑

x=0

(
c

x

)
N3,x = c. (5.42)

Finally, for the term with N2,x, we get

(1− δ)c −
c∑

x=1

(
c

x

)
δx(1− δ)x = 2(1− δ)c −

c∑

x=0

(
c

x

)
δx(1− δ)x = 2(1− δ)c − 1. (5.43)

Since (1− δ)c ≥ 1− cδ, we get 2(1− δ)c− 1 > 1− 2cδ. So for the summation of Mx we finally get

c∑

x=0

(
c

x

)
Mx < 1 + β

(
2cδ − 1

π − 4δ′
+ βc

)
. (5.44)

57

Using c ≥ 1, β =
√
δ/c and δ = 1/(300c) this can be further bounded to

c∑

x=0

(
c

x

)
Mx < 1 +

β

π

(
−1 + 1/150 + π

√
3/30

)
. (5.45)

This then eventually gives

c∑

x=0

(
c

x

)
Mx < 1− β

4
. (5.46)

So finally, for E~y,X,~p
[
e−βS

]
we get

E~y,X,~p
[
e−βS

]
≤
(

c∑

x=0

(
c

x

)
Mx

)`
< (1− β/4)` < e−β`/4. (5.47)

So we can bound P[S ≤ cZ] by

P[S ≤ cZ] ≤ e−β`/4

e−βcZ
= e−β(`/4−cZ). (5.48)

Using ` = 100c2k, Z = 20ck, β =
√
δ/c, δ = 1/(300c) and k = dn/ε1e we get

P[S ≤ cZ] ≤ P[S ≤ cZ] < e−k
√
c/4 ≤ (ε1/n)

√
c/4. (5.49)

So the probability that no guilty user is accused is bounded by

P[C ∩ σ(~y) = ∅] < (ε1/n)
√
c/4, (5.50)

which concludes the proof.

As mentioned, for Theorem 5.14 we will only give a sketch of the proof, and refer the reader to
the extended version of [Tar03] for the complete version of the proof.

Sketch of the proof of Theorem 5.14. To make Theorem 5.13 work, one now has to take β =
O(1/c) instead of β =

√
t/c to end up with a factor c instead of

√
c later on. Then the

requirement β(xq − (c− x)/q) < 1.79 does not always hold anymore, so that eu ≤ 1 + u+ u2

does not always hold for u = β(xq − (c− x)/q). To make the same proof work, one then has
to add an extra term χx(p) exp(β(c− x)/

√
1− p) to the right hand side of eu ≤ 1 + u+ u2 for

u = β(xq − (c− x)/q), so that the inequality does hold. Continuing the proof, one then also has
to bound the extra term

Rx = Ep
[
χx(p)(1− p)c−x exp(β(c− x)/

√
1− p)

]
. (5.51)

After some careful bookkeeping this term eventually vanishes, and one gets the same inequality
P[S ≤ cZ] ≤ e−β(`/4−cZ) as in the proof of Theorem 5.13. However, then one can use β = 1/(20c)
so that P[S ≤ cZ] < (ε1/n)c/4, as desired.

5.4.2.5 Summary

Using the original Tardos scheme from [Tar03], we saw that we can guarantee security with
a codelength of only ` = 100c2dlog(n/ε1)e, i.e. quadratic in c and logarithmic in 1/ε1 and n.
Although the constant 100 is big, this scheme is already a big improvement over the previous

58

scheme, the Boneh-Shaw scheme. Especially for large values of c, the quadratic term is a big
improvement over the quartic term in the Boneh-Shaw scheme.

Although we hope the intuition behind the scheme became clear in the Introduction, the actual
implementation of the scheme with exact values came out of the blue, with numbers like
` = 100c2k, δ = 1/(300c) and Z = 20ck appearing without a clear explanation. These constants
were chosen in such a way that the soundness and completeness properties can be proven, but
why these parameters were exactly chosen like this is not clear. As it turns out, in many areas
of this scheme there is also room for improvement, which we will investigate next.

5.4.3 Improvements

As we saw in the previous subsection, using certain parameter choices and using certain
mathematical bounds in the proofs of soundness and completeness allowed Tardos to prove that

his original fingerprinting scheme is ε1-sound and ε2-complete for ε2 ≥ ε
c/4
1 . However, these

parameters were mostly chosen as nice, round numbers, and no motivation for this choice was
given. So maybe with a different choice of parameters, one can get a shorter codelength while
still being able to prove soundness and completeness. Or one could simply try to tighten the
proof, since some of the bounds used (such as the Markov inequality) are not tight. Below we
will discuss some papers that used this approach to make the Tardos scheme even better, and
further reduce the codelength.

5.4.3.1 Symmetric score function

One obvious improvement, which remarkably enough wasn’t suggested until 2008, is to also use
non-zero accusation weights when yi = 0, i.e. define Sji differently in those cases. In [SKC08] the
following definition of Sji, for q = 2, was introduced, which was also used in the Introduction.

Sji = Sji(yi, (~xj)i, pi) =

+
√

(1− pi)/pi Xji = 1, yi = 1

−
√
pi/(1− pi) Xji = 0, yi = 1

−
√

(1− pi)/pi Xji = 1, yi = 0

+
√
pi/(1− pi) Xji = 0, yi = 0

(5.52)

Using this definition of Sji has several advantages. Most importantly, if all pirates receive a
symbol 0, then in the original scheme their scores would not increase as yi is 0. With this new
definition, their scores increase a lot on these positions. In fact, out of the two cases where the
marking assumption applies (all zeroes or all ones), in the original scheme we only made use of
the case where all users had a one. Now we make use of both cases, which basically makes the
scores go up twice as fast. This is also roughly the result from [SKC08], and they proved that
using this symmetric Tardos scheme, the codelength can be reduced by a factor 4, compared to
earlier results. This symmetric score function will also be used in Part II.

5.4.3.2 Optimizing the scheme parameters

One can investigate whether the choice of parameters was fully justified, or if we can use a better
choice of parameters. As it turns out, also here we can get reasonable improvements compared
to the original Tardos scheme.

In [SVCT06] the constants were all substituted by variables which were to be specified later. This
resulted in some awful equations, e.g. equation (88) on page 21. Using numerical evaluations of
this equation, one obtains better parameter sets satisfying all the necessary equations. Figure

59

3 in [SVCT06] shows that for ε2 = ε
c/4
1 , as in the original Tardos scheme, the codelength can

be reduced by a factor between 1.1 and 1.2. Figures 1 and 2 in the same paper show that
for the practical case that ε2 � ε1, we can reduce the codelength by a factor between 2 and
2.5, depending on the exact choices of ε1, ε2 and c. In any case, this definitely leads to big
improvements as well.

In [BT08] a similar approach was used, by reconsidering the parameter choices in the original
Tardos scheme. Most of the work in this paper is similar to the analysis in [SVCT06], but
one important inequality which was not parametrized in [SVCT06] was parametrized here:
ex ≤ 1+x+x2 for x < 1.79. Instead this inequality was substituted by ex = 1+x+ω(x)x2, where
ω(x) is some function of x. This further tightens the bounds, and leads to some improvements
compared to [SVCT06]. Especially for large c their results are good, decreasing the codelength
from the original Tardos scheme by a factor 4. This improvement, together with the symmetric
score function, is the basis for Chapter 8 in Part II.

5.4.3.3 Using the Gaussian approximation

Finally an important improvement, which however is harder to prove rigorously, is to apply
the Central Limit Theorem to the accusation scores, as was done in [SVCT06], [SKC08] and
is done in [SS10]. Recall that Sj =

∑`
i=1 Sji with ` reasonably large. For innocent users, we

furthermore have that all the Sji are i.i.d. random variables with mean 0 and variance 1. We
therefore expect that Sj (almost) behaves like a normally distributed random variable with
mean 0 and variance `. If this is the case, we can simply calculate the probability that this user
is falsely accused, i.e. that this normally distributed random variable exceeds some threshold Z.

Similarly, for the guilty users, we expect that the total coalition score S will behave like a
normally distributed random variable as well, as ` goes to infinity. This is because pirates cannot
really influence this total score. Using this Gaussian approximation of the distributions of S
and Sj , the analysis becomes simpler, and we get another factor 2 improvement over the results
in [SVCT06] and [SKC08].

5.4.3.4 Combining improvements

Using the results from the Gaussian approximation, the symmetric accusation weights and the
optimized scheme parameters from [SVCT06], the paper [SKC08] shows that a codelength of

` = π2

2 c
2dln(n/ε1)e ≈ 4.93c2dln(n/ε1)e is sufficient for secureness. This is under the assumption

that the scores behave exactly like normal distributions, i.e. this only holds with certainty for
infinite c.

If we only use the results from the symmetric accusation weights and the optimized scheme
parameters, then we can show that a codelength of roughly ` = π2c2dln(n/ε1)e ≈ 9.87c2dln(n/ε1)e
is sufficient for secureness for large c. This ”large c” can then be specified exactly, i.e. if certain
bounds are met, then with this codelength and certain parameters we get secureness with given
maximum error probabilities.

5.4.4 Summary

After an extensive introduction, explaining the idea behind the scheme, we analyzed the original
Tardos scheme and mentioned the improvements suggested in literature. The original Tardos
scheme is already impressive, theoretically and practically, for achieving a codelength which is
only a constant factor off from the theoretical lower bound.

60

Although this original scheme is already quite good, we saw that with some basic improvements
one can do even better. Making some realistic assumptions, we can prove that for big c we
can improve the original scheme by a factor 20. Then we are only a factor 3.61 off from the
theoretical minimum of 2 ln(2). If however we want to be able to prove secureness and do not
want to make such assumptions, then we can change the scheme to get codelengths that improve
upon the original Tardos scheme by a factor between 2 and 20.

5.5 Summary

At the beginning of this chapter we looked at lower bounds on the codelength. In 2003 it
was proven that the codelength has to be at least quadratic in c and logarithmic in n and ε1.
Some papers then showed that this bound is tight, and these papers investigated the exact
constant for the codelength. Amiri and Tardos claimed to have solved this problem in [AT09]
for asymptotically large c, giving the exact minimum codelength.

The first scheme we then investigated was the Boneh-Shaw scheme, which is intuitive and has a
length polynomial in c. However, the original scheme had a codelength which was quartic in c,
and [PSS03] showed that any Boneh-Shaw-like scheme that is secure needs to have a codelength
which is at least cubic in c. This means that with the Boneh-Shaw scheme, we cannot approach
the quadratic lower bound on the codelength.

Finally we looked at the Tardos scheme, which does achieve the quadratic lower bound, but has
a relatively large constant. Using several improvements, this constant can be further reduced
to narrow the gap between the required codelength in the Tardos scheme and the lower bound
on the codelength of any scheme by a factor of less than 4. This scheme, together with these
improvements, is currently the best probabilistic static scheme known in literature.

61

62

Chapter 6

Deterministic dynamic schemes

Citations: For writing this chapter, the following articles were used: [FT01], [BPS00]

6.1 Introduction

In the previous chapters we considered static schemes using one single fingerprinting code and
only one feedback moment, i.e. when the forgery is sent from the pirates to the distributor. Here
we will look at dynamic schemes, which allow more interaction between the distributor and
the users. In this chapter we will focus on deterministic dynamic schemes, which are dynamic
schemes which trace traitors with no error, e.g. any accused user is known for certain to be
guilty.

One can remark that a series of fingerprints, such as a series of forgeries received by the distributor
or a series of fingerprints received by a user in a dynamic scheme, can be seen as one longer
fingerprint. So one may ask the question whether using such a dynamic scheme with, say, t
sequential fingerprints of length `′ in a dynamic scheme is different from using one fingerprint of
length ` = t · `′ in a static scheme, and whether it leads to any improvements compared to static
schemes. As we will see later in this chapter, the answer to both questions is affirmative: one
can indeed get a better efficiency using dynamic schemes instead of static schemes. In particular,
the theoretical lower bounds that hold for deterministic static schemes are violated by some of
the best deterministic dynamic schemes. This can be explained by the fact that the distributor
now has more freedom and more information when generating fingerprints, while pirates have
less information, e.g. the pirates are forced to output forgeries before they know which symbols
they will receive next.

As a first result, we show that there is still a strong relationship between dynamic and static
schemes, and that the following result about IPP codes translates directly to a property of
deterministic dynamic schemes.

Theorem 6.1 (Minimum alphabet size of deterministic dynamic schemes). [FT01, Theorem 1]
To catch a coalition of c pirates using a deterministic dynamic traitor tracing scheme, we need
an alphabet size of at least c + 1. Furthermore, this bound is tight: there exist algorithms to
catch a coalition of c pirates using an alphabet of size c+ 1.

We will not prove this Theorem, since the proof is analogous to the one for IPP codes, e.g. see
Theorem 4.41 and its proof on page 34 for details. In this case we do identify sequences of
fingerprints with one longer fingerprint, i.e. identify deterministic dynamic schemes with IPP
codes to prove this result.

63

We mention one more important result which says there is essentially no difference between
catching one pirate or catching all pirates in this setting. This result allows us to be less precise
about whether we write ”catching one pirate in O(t) time” or ”catching all pirates in O(t) time”,
since both are equivalent (assuming t = Ω(c), which generally is a safe assumption). This also
allows us to be imprecise about when an algorithm should terminate; one may want to catch all
pirates, or one could choose to save time by terminating when one pirate is caught.

Theorem 6.2 (Catching one or all pirates). [BPS00, Lemma 2.1] Let C be a coalition of size
c. Then there exists a deterministic dynamic scheme that always catches at least one of the c
traitors in t time if and only if there exists a deterministic dynamic scheme that traces all c
traitors in t+ c− 1 time.

Proof. Obtaining an algorithm to trace one pirate in t time, given an algorithm that traces
all c traitors in t+ c− 1 time is trivial. If all c traitors are traced deterministically, then all c
traitors must have been assigned some symbol σj at some time tj , 1 ≤ j ≤ c, so that no other
users received that same symbol at that same time, and the coalition outputted that specific
symbol. Since only one traitor can be traced in one time step, we have that tj < tj+1 for all j,
and tc ≤ t+ c− 1. This means that t1 ≤ t, so that stopping after time t ensures that at least
one pirate has already been caught.

Now suppose we have an algorithm A tracing a single traitor in t time. We now define an
algorithm B, which uses algorithm A to trace all traitors in t+ c− 1 time. For this, algorithm
B simply runs algorithm A, by passing on symbol assignments and the symbols outputted by
the coalition back and forth between algorithm A and the users, until at some moment a pirate
is exposed and would be disconnected by algorithm A. Instead of passing on this symbol to A,
algorithm B disconnects the pirate, and rebroadcasts the same symbols to all users except for
the disconnected user, which is now out of the game. In such a step, the time B uses grows 1
larger than the time A uses. Now, if a new symbol was outputted, it is passed on to A, and the
scheme continues. This is repeated until the penultimate pirate is disconnected by B, and the
last pirate will be caught by A. By that time, B has run an extra c− 1 time steps compared
to A, and by passing on the final symbol to A and letting algorithm A catch this last pirate,
algorithm A found 1 pirate in t time and algorithm B found all pirates in t+ c− 1 time.

Note also the use of the word ”algorithm” in this chapter. In the dynamic setting we no longer
consider schemes as a pair of an accusation algorithm and a fingerprinting code, but as one big
accusation algorithm using several shorter traitor tracing codes sequentially.

6.1.1 Graph notation

Before we start with the schemes and the lower bounds, we present the graph notation introduced
in [BPS00] which reduces the problem of symbol distribution to a kind of vertex coloring problem.

Definition 6.3 (Graph notation for dynamic schemes). [BPS00, Section 2.3] Let the set of
users U be partitioned into disjoint subsets S1, . . . , Sk, such that all users in some subset receive
the same symbol. Then the graph describing the current state of the algorithm, denoted by
Γ, is defined as Γ = (V,E) with vertex set V = {Si | 1 ≤ i ≤ k} and edge set E ⊆ {Si ∼
Sj | Si∪Sj is known to contain a traitor} 1. There is always one special vertex I ∈ V , containing
”innocent users”, i.e. users not known to contain a traitor. This vertex (usually) has degree 0.
The assignment of symbols to subsets is respresented in this graph as a vertex coloring function

1Note that there are no assumptions on the maximality of E. We assume that if there is an edge between
vertices S, T , then it must be known that S ∪ T contains a traitor, but we do not assume the converse, i.e. that if
it is known that S ∪ T contains a traitor, then S and T are connected in Γ.

64

φ : V → Q, where φ(S) = ω means that the color ω (the symbol ω) is assigned to the vertex S
(the users in subset S).

As an example, consider the following graph. The labels of the graph contain the numbers 1 up
to 9, which indicates that there are 9 users in total. In this case, these users are partitioned into
five sets, and the edges indicate the existence of a traitor in (at least) one of the two endpoints
of the edge, e.g. the sets {4, 5, 6} and {1, 2, 3, 8} must both contain a traitor. Since any vertex
cover in this graph has size at least 2 (e.g. V ′ = {{5, 6}, {1, 3}} ⊆ V covers all edges) we know
that there are at least two traitors assisting in creating a forgery. And since a vertex cover of
size 2 exists, it could be that there are only two traitors, e.g. C = {1, 5} satisfies the implications
from the graph.

4

5, 6 1, 3

2, 8

7, 9

Figure 6.1: An example of the graph coloring used in this chapter. For example users 1 and 3 get the
color (symbol) orange, while users 4, 7, 9 receive the color (symbol) blue. The edge between {4} and {5, 6}
implies that the union {4} ∪ {5, 6} = {4, 5, 6} contains a pirate. Since both {4, 5, 6} and {1, 2, 3, 8} must
contain at least one traitor, we know that there must be at least two traitors. A possible coalition is
C = {1, 5}, as then all edges are covered by the vertices the two colluders are in.

Since we want to make progress, by closing in on the traitors, there are typically two cases to
consider when feedback is received from the pirates, and two common steps to take in those
two cases. These are described below. In the main algorithms described in this chapter, other
situations never arise.

The received color belongs to only one vertex.
In this case, the distributor knows that this subset contains a traitor, and a common action
in the algorithm in that case is to split the corresponding vertex into two new vertices,
each containing about half of the users in the original subset, and to add an edge between
these two new vertices. One can add this edge, since it is known that the big subset, i.e.
the union of the two smaller subsets, contains a traitor. The original vertex is removed
from the graph, along with all its edges, and the two new connected vertices are inserted
in the graph.

The received color belongs to two vertices, not connected by an edge.
In that case, the action to take in the graph is simple: add an edge between the two
vertices. This edge is justified if only these two vertices received the output color, as then
the union of these two sets must contain a traitor (which defines a justified edge).

After this change in the graph, one needs to reassign symbols to subsets of users, i.e. assign a
new coloring to the vertices of the graph. After defining this new coloring, the distributor again
waits for a response from the pirates, and after that repeats one of the two steps above. In
the next sections we will give schemes and describe exact implementation details for updating

65

the graph and coloring the vertices in different schemes, and prove runtime results for these
algorithms.

As we will be using this graph notation a lot, we will use different terminology in this chapter
compared to the rest of the report. We will for example refer to different symbols as different
colors, and call subsets of users vertices instead.

6.1.2 Example

Finally let us briefly consider a simple exponential time algorithm, suggested in [FT01], to
illustrate the graph notation and describe how such algorithms work. This is a very simple
and inefficient algorithm; it simply checks all subsets of c users to see if that subset is the
coalition. This algorithm uses c+ 1 colors and runs in finite time, thus also proving that there
exist deterministic dynamic schemes using only c+ 1 colors.

Construction 6.4. [FT01, Section 3.2] Start with t = 0, c′ = 0,Γ = (V,E) with V = {I},
I = U , and E = ∅. Throughout the scheme always E = ∅, and every distinct vertex receives a
distinct color.

For every selection u1, . . . , uc′ of c′ users, set I = U \ {u1, . . . , uc′} and V =
{{u1}, {u2}, . . . , {uc′}, I}. Let each vertex get a distinct color. Now if the pirates ever transmit
a symbol belonging to a singleton vertex, we disconnect that user and decrease c′ by one. Else if
all selections of c′ users have been checked and no user is disconnected, we increase c′ by one
and repeat this procedure for every selection of c′ + 1 users.

As mentioned, this algorithm basically tries all possible coalitions until the right coalition is
found. This is done by assigning each of these c users a seperate symbol, and assigning the
remaining users the same symbol. If the coalition is this set of c users, then they must output
one of these symbols that are assigned to only one user. Then the distributor knows this user is
guilty and disconnects him, and continues. If on the other hand the coalition can always output
a symbol belonging to the remaining users, then the coalition size must be greater than our
guess c′, and we increase c′ by one. Eventually the coalition is forced to output one of these
special symbols, which will certainly happen for some c′ ≤ c. And since there are at most c′ + 1
colors used at any time, it follows that this construction uses at most c+ 1 colors at any point
in time. For the running time, we get the following result.

Theorem 6.5. [FT01, Section 3.2] Using Algorithm 6.4, we can catch all c colluders in at
most t = O(nc) time, with a codelength of ` = 1 at each step.

Proof. In the worst-case scenario, one has to increase c′ all the way up to c until one pirate is
caught. This takes at most

(
n
c′

)
steps for each value of c′, i.e.

∑c
c′=0

(
n
c′

)
= O(nc) time in total.

So the running time to catch one or all pirates satisfies t = O(nc).

Of course this is a horrible running time. In the worst case, the total amount of data needed to
catch the pirates is t · ` = O(nc) symbols over an alphabet of size (at most) c+ 1. This algorithm
merely serves as an example and it shows that we can in fact catch all pirates using only c+ 1
symbols (colors).

The rest of the chapter is divided as follows. First, in Section 6.2 we discuss theoretical lower
bounds on the running time and total codelength of deterministic dynamic schemes. In Section
6.3 we will then discuss the Fiat-Tassa scheme, which has an optimal codelength for an alphabet
size of (at most) 2c+ 1. Then in Section 6.4 we will discuss several schemes which were described
in [BPS00], most of which use only c+ 1 cymbols. Finally in Section 6.5 we review the results
from this chapter.

66

6.2 Lower bounds

Similar to the previous chapter, we first try to find lower bounds on the effort needed to catch
pirates. These provide us targets for what runtimes we would like to achieve using these schemes.
In [BPS00, Section 7], the following lower bound was proven for deterministic dynamic schemes
when no information about c known in advance.

Theorem 6.6. [BPS00, Lemma 7.1] Let α ≥ 1 be some constant. Then to catch a coalition
of size at most c, using an alphabet of size q = c+ α, at least Ω(c2/α) rounds are needed if no
sufficiently small bound on the number of pirates c is known in advance.

Proof. For α ≥ c the bound obviously holds, since then to catch c traitors at least Ω(c2/α) = Ω(c)
rounds are needed. Now assume α < c and n = c+ α+ 1, i.e. there are c colluders and α+ 1
innocent users. We now prove that one can keep outputting symbols in such a way that no
user can be accused with certainty before some time t, when c is not known. This is done by
proving that for any user j, the set U \ {j} could have generated that same sequence of output
symbols. In other words, it could theoretically be possible that user j was framed by all other
users conspiring together. Only when t is sufficiently large (i.e. t = Ω(c2/α)) it could be possible
that one user is found guilty with absolute certainty.

We maintain a graph G, where every user forms a different vertex and there are initially no edges.
Since n > q, by the pigeonhole principle, at any point in time there are two users receiving
the same color. We will then output this color, and add an edge between the two users in our
graph G. If more than two users received the same color, pick any two of them and add an edge
between these two users.

Our first claim is that if there exists an independent set of size α+ 1 in G, then we can continue
outputting symbols as above. Recall that an independent set is a set of vertices with no edges
connecting any pair of these vertices. If there exists an independent set of size α+ 1 in G, then
the answers are thus consistent with the remaining c users forming a coalition and these α+ 1
users being innocent. And as long as we can output symbols that are assigned to at least two
users, there cannot be any accusations, if c is not known.

Now our second claim is that if G does not contain an independent set of size α + 1, then G
must contain at least Ω(c2/α) edges. To prove this, notice that an independent set of size c+ 1
in G corresponds to a clique of size c + 1 in the complement graph of G, say H. By Turan’s
Theorem [Tur41], any graph on n = c+α+1 vertices with no clique of size r+1 = α+1 contains
at most as many edges as the Turan graph T (n, r), which contains at most n2/2 − n2/(2r)
edges. Since G and H together have n2/2 − n/2 edges, the number of edges in G is at least
n2/2− n/2− (n2/2− n2/(2r)) = 1/2(n2/r − n) = Θ(n2/r) = Θ(c2/α), which proves the claim.

So by outputting symbols assigned to at least two users, no user can be accused with certainty.
Above we showed that this can be done in a way consistent to some pirate coalition for at least
Ω(c2/α) rounds, hence at least Ω(c2/α) rounds are needed to catch the coalition.

If not only c is unknown but also n is significantly larger than c (which is usually the case), then
the following Theorem gives an even stronger lower bound on the time needed to catch pirates.
We will not prove this Theorem here.

Theorem 6.7. [BPS00, Theorem 7.2] Let α ≥ 1 be some constant, and let λ > 0 be some
constant such that n ≥ (1 + λ)c. Then to catch a coalition of size at most c, using an alphabet
of size q = c+ α, at least Ω(c2/α+ c logα+1(n)) rounds are needed if no sufficiently small bound
on the number of pirates c is known in advance.

67

Theorems 6.6 and 6.7 have several interesting consequences. For example, taking α = 1 in
Theorem 6.6 tells us that if no information on c is known in advance, then any deterministic
dynamic scheme will need at least Ω(c2) time to catch the pirates. This is very similar to the
static schemes we saw earlier; there also the lower bound was quadratic in c. In that sense this
does not show how we get an improvement by going to the dynamic model. But if we take
α = c in Theorem 6.6, then the lower bound only tells us that t = Ω(c). Then Theorem 6.7
gives a stronger lower bound, namely t = Ω(c logα+1(n)), but both bounds are only linear in c.
Of course one could blame the lower bounds: perhaps the lower bound is indeed still quadratic
in c, but we simply failed to show it here. However, this is not the case, as we will see later;
taking q = 2c+ 1, i.e. α = c+ 1, we can construct a scheme which is indeed only linear in c and
logarithmic in n.

Finally note that we can make the logarithmic term in Theorem 6.7 as small as we want by
taking α sufficiently large. If α = O(n1/β) for some constant β, then the lower bound will simply
be t = Ω(βc). In particular, β = 1 gives a bound linear in c. This is however trivial; if α = n
then q ≥ n and we can simply give each user a different symbol, so that we trivially catch one
pirate in every round.

6.3 The Fiat-Tassa scheme

6.3.1 Introduction

The first real dynamic scheme we will look at is the Fiat-Tassa scheme, introduced in [FT01]
and also discussed in [BPS00]. This algorithm is the simplest of the ones still to follow in this
chapter, and it is arguably the most useful one to follow as well, both for its simplicity and its
efficiency. As this algorithm is basically an extended version of the binary search algorithm,
we will first recall how this algorithm works, and in particular how it can be used here using our
graph notation. The extension to the Fiat-Tassa scheme will then be natural and intuitive, and
only requires a little additional work.

First of all, the binary search algorithm is a method which is most notably used for searching in
sorted arrays. Given a sorted array A (i.e. A[i] < A[j] for all i < j) and an element α known to
be in that array, the problem is to find the index i of that element in the array (i.e. find i such
that A[i] = α). If the length of the array is n, then this can be done in log2(n) time using the
binary search algorithm. Starting with a = 1 and b = n, at every iteration step the invariant
is that we know that a ≤ i ≤ b. At every step we then compare α with the middle element,
i.e. if m = b(a+ b)/2c, then this element is A[m]. If α > A[m], then we set a = m+ 1, while
if α ≤ A[m] we set b = m. In both cases, the interval size b− a decreases by a factor 2. So in
log2(n) time, the interval size is decreased to 1 and we have found i.

The binary search algorithm relies on the fact that with one binary question at each step (i.e.
Does α > A[m] hold?) we can eliminate half of the remaining suspects as suspects. In the above
example this can be done because the array is sorted, which implies that if α > A[m] then α
is not somewhere before position m. However, the applications are not limited to this specific
instance, and the method works as long as we can ask any binary question that eliminates half
of the space we are searching in. In particular it can be applied to tracing a single traitor as
follows. We use three colors: one for each half of the space we are searching in, and one for the
rest. We then distribute these colors, and wait for the pirate response. We then eliminate the
part that had the wrong color, and add it to the section of innocent people. The users that did
receive the same color as was broadcast by the pirate are again split into two groups, and the
procedure repeats. Figures 6.3 and 6.4 show the process graphically.

68

4 8 15 16 23 42112 19 30 37 51 55 584527

4230 37 51 55 584527

4230 3727

4237

Figure 6.2: The binary search algorithm applied to a sorted array A of length 16. The pivots are marked
bold and black, while the number to be found is marked bold and blue. Finding the index of number 37
takes 4 steps, and in particular finding any number takes at most log2(16) = 4 steps.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 6 7 8 9 10 11 12 13 14 15 16

Figure 6.3: The binary search algorithm used for tracing one traitor among 16 users, using only 3 colors.
Finding the traitor, user 5, involves at most log2(16) = 4 steps of using more than 1 color. If we were to
remove the gray numbers in the above figure, we would clearly get the same structure as in Figure 6.2.

69

1...45, 6 7, 8 9...16

1...45 6 7...16

1...4 5...8 9...16

1...8 9...16 ∅

t = 2

t = 1

t = 3

t = 4

Time t Graph Γ Output

1...16t = 0

1...4
6...16

t = 5

1...16

1...8

5...8

5, 6

5

I

None

Figure 6.4: The graph representation for the binary search algorithm as given above. There are always
at most 3 vertices, and the size of the vertices not equal to I decreases by a factor 2 in every step.

t = 0 t = 1 t = 2 t = 3 t = 4 t = 5

Alice 0 1 1 0 0 0
Bob 0 1 1 0 0 0
Charlie 0 1 1 0 0 0
Dave 0 1 1 0 0 0
Eve 0 1 2 1 1 -
Fred 0 1 2 1 2 0
George 0 1 2 2 0 0
Henry 0 1 2 2 0 0
Isaac 0 2 0 0 0 0
. . . (0) (2) (0) (0) (0) (0)
Olaf 0 2 0 0 0 0
Peter 0 2 0 0 0 0

Forgery 0 1 2 1 1 -

Table 6.1: The symbol distribution for the previous example of tracing a single traitor among 16 users.
The symbols distributed at time t depend on the values yi for i < t. Eve is found guilty and disconnected
after 5 symbols, and so she doesn’t receive a 6th symbol.

70

So using a slightly modified version of the binary search algorithm, we can find a single pirate
with an alphabet of size only 3 in log2(n) time.

6.3.2 The Fiat-Tassa scheme

While the above shows how to efficiently catch a single pirate, we are mostly interested in
catching coalitions of multiple pirates. Then the scheme above no longer works, since at some
point another pirate may jump in and distribute his symbol. Then we are already using two
colors for the first traitor, and the third color, used for innocent users, is output by a pirate.

However, we can extend this binary search algorithm to catch multiple pirates, by running
multiple binary searches simultaneously. First we use the same algorithm as above, with again
the invariant that any edge between two vertices indicates that the union contains a pirate. And
again, if the color received belongs to a vertex X connected to another vertex Y , then we add
the users from Y to I and split X into X ′ and Y ′ of equal size, connected by an edge.

Now in the case of multiple pirates, we will likely run into the situation that at some point the
received color belongs to the vertex I, i.e. one pirate is in the group of users that was presumed
innocent until now. What we do then is we split this vertex I into two new vertices V and W
of equal size and connect them by an edge. We make a new empty I, and we continue with
5 vertices instead of 3 and 5 colors instead of 3. We do this every time we discover there is a
traitor in I; the number of vertices and colors then increases by 2, and we know the number
of pirates is at least 1 more than we previously thought. In total this means we need at most
2c+ 1 vertices and colors, since there are always at most c cliques of size 2 and one vertex I.
After some vertex has size 1 and its color is returned, we disconnect this single user, knowing
that he is a pirate, and we therefore need two fewer colors afterwards.

This whole scheme was first described in [FT01], and in [BPS00] the associated graph notation
was introduced. Formally, this leads to the following algorithm.

Construction 6.8. [FT01, Section 3.3] Start with t = 0 and start with a graph Γ = (V,E)
with I = U, V = {I}, E = ∅, and set c∗ = 0. All vertices are always given distinct colors. Let X
denote the vertex belonging to the color received by the distributor at some time t. Then for each
round t, do the following:

1. If |X| = 1, then the single user in X, say u, must be a traitor. Disconnect user u and set
c∗ = c∗ − 1.

(a) If X = I, set I := ∅ and set c∗ = c∗ + 1.

(b) If X 6= I, then X is connected to some vertex Y . Add Y to I, and remove X and Y
from the graph.

2. If |X| > 1, then we can split X into two non-empty subsets X ′ and Y ′, containing d|X|/2e
and b|X|/2c users respectively. Add the vertices X ′, Y ′ and the edge X ′ ∼ Y ′ to the graph.

(a) If X = I, update I := ∅, and set c∗ = c∗ + 1.

(b) If X 6= I, then X is connected to some vertex Y . Add Y to I, and remove X and Y
from the graph.

In the construction, c∗ stands for a lower bound on the active pirates, i.e. if c∗ = 5 then there
are at least 5 pirates still active. Note that the steps for X = I and X 6= I are the same in both
cases; if X = I, then we increase c∗ as the output does not correspond to any of the c∗ pirates
we know to be active. If X 6= I and X ∼ Y , then we add Y to the set of ’innocent’ users, and

71

depending on whether |X| = 1 or |X| > 1, we either found a pirate, or we get a new pair of
smaller vertices X ′ ∼ Y ′.
As an example, we applied the construction to the case of 16 users and two pirates, namely users
3 and 12. Figure 6.5 shows the result when putting the users in an array, while Figures 6.6 to
6.16 show the same example with our graph notation.

For verifying the scheme, we simply mention some of the invariants of this algorithm, which can
easily be verified.

1. For all vertices X ∈ V , either X = I or X is connected to some unique vertex Y ∈ V .

2. If X ∈ V is connected to some Y ∈ V , then X ∪ Y contains a traitor.

3. The number of active pirates in the coalition is at least c∗, hence c ≥ c∗.

4. At any moment in time the number of vertices satisfies |V | = 2(c∗) + 1 ≤ 2c+ 1.

5. At any time the number of edges is given by |E| = c∗.

For the runtime and the fact that indeed all pirates are caught, first note that we only disconnect
guilty users. Since there are only c of these, the first option in the construction can only be
encountered c times. In the second case, where |X| > 1, we split X into two new vertices X ′

and Y ′. If X = I, then c∗ is increased, which can only be done at most c times. If X 6= I, then
Y is added to I and we replace X by the two new vertices. These are half the size of X and Y ,
hence the size of this pair of vertices decreases by a factor 2. For every pair of vertices this can
thus only occur at most log2(n) times, after which both vertices have size 1. And since there
are c such pairs, this can occur c log2(n) times in total. Summing up these runtimes for each
possible option, we get the following result.

Theorem 6.9. [FT01, Theorem 2] For any c, the Fiat-Tassa algorithm traces all c pirates in
at most c log2(n) + c time, using at most 2c+ 1 colors.

6.3.3 Summary

The Fiat-Tassa scheme is basically an extension of the binary search algorithm. A binary search
takes log2(n) time to find one item, and by running c of these searches simultaneously the
Fiat-Tassa scheme can find all c traitors in at most O(c log2(n)) time. The cost for this is that
we need two colors (symbols) per traitor and one additional color for the innocent users, i.e. at
most 2c+ 1 colors in total. So in terms of traitor-tracing schemes, we need an alphabet of size
2c+ 1 and t = O(c log2(n)) time (and ` = 1 at each step) to trace all traitors.

Looking at the static schemes we have seen before, we see that this is actually the first scheme
which is linear in c (and logarithmic in n). Both deterministic and probabilistic static schemes
have to satisfy lower bounds which are quadratic in c. While we already saw earlier that we
could not find a lower bound quadratic in c, we now see the reason why. The sharpest lower
bound we saw in Theorem 6.7 for an alphabet size of at most 2c + 1 is O(c logc(n)), so this
scheme is almost tight. Asymptotically we are only a factor log2(c) short.

The price we pay for the low running time is that we need an alphabet size of at most 2c+1. Since
we are working with deterministic accusations we need q > c, but there is still a big difference
between q = c+ 1 and q = 2c+ 1. This could make this scheme impractical, even though the
runtime is very low. In the next section we will investigate constructions from [BPS00] which
use only c+ 1 colors.

72

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 4 5 6 7 8 9 10 11 13 14 15 16

Figure 6.5: The Fiat-Tassa algorithm as given above for tracing two colluders. There are always at
most 2c + 1 = 5 vertices (colors) in the graph, and the time needed to isolate both traitors is roughly
2 log2(16) = 8. The colors red and blue are used for tracing the first traitor, while orange and green are
used for the second traitor. The color gray is used for the special vertex I. At the end both pirates are
disconnected.

73

1..16

Figure 6.6: There are
16 users in the system,
which are all initially
added to I.

1..8

9..16

∅

Figure 6.7: We re-
ceived output from
user 12, so c ≥ 1
and we split I into
two new vertices. We
add a new empty ver-
tex I.

1..4

5..8

9..16

Figure 6.8: This
time the color re-
ceived by user 3 was
received, so this ver-
tex is split and its
neighbor is added to
I.

1, 2

3, 4

5..16

Figure 6.9: Again
user 3 outputs his
symbol, so that we
again split this vertex
in halves and add the
neighbor to I.

1, 2

3, 4

5..10

11..16

∅

Figure 6.10: User 12, who was in I, dis-
tributed his symbol, so c∗ is increased to 2 and
we now use 5 vertices and colors.

1, 2

3, 4

11..13

14..16

5..10

Figure 6.11: Again user 12 distributes his
copy, so his vertex is split into two and its
neighbor vertex is added to I.

1, 2

3, 4

14..16
5..10

11, 12

13

Figure 6.12: The colluders again choose to out-
put the symbol assigned to user 12, resulting in
another split.

1, 2

14..16
5..10

11, 12

13

3

4

Figure 6.13: Now pirate 3 publishes his color,
so his vertex is split in halves, and the users 1, 2
are again added to I.

1, 2
5..10

3

4

11

12

13..16

Figure 6.14: The pirates can get
away with publishing their symbol one
last time, as user 12 is not yet iso-
lated. After this step both are isolated,
and so in two more iterations both will
be caught.

1, 2

11

12

13..16
4..10

Figure 6.15: No more splits
are needed, since the only user
to receive the distributed color
was user 3. He must therefore
be guilty and he is disconnected
from the system. Now c∗ de-
creases to 1 and we use only 3
colors from now on.

1, 2

13..16
4..11

Figure 6.16: The last
pirate, user 12, also
output his symbol. He
is captured and discon-
nected, and we set c∗ =
0. From here on we
only use color, as we
suspect there are no pi-
rates anymore.

74

6.4 The Berkman-Parnas-Sgall schemes

6.4.1 Introduction

Shortly after Fiat and Tassa published their paper, containing the Fiat-Tassa scheme above,
Berkman, Parnas and Sgall published a paper further investigating the concept of dynamic
traitor tracing. In particular, this latter paper focused on the case of using the minimal number
of colors for which a deterministic scheme exists, i.e. q = c + 1. The paper suggested several
schemes, three of which we shall discuss below.

Besides the algorithms, the same paper also investigated lower bounds, which we already saw in
Section 6.2. For q ≤ c+ 1 at any time and c unknown, Theorem 6.6 says we need at least Ω(c2)
time to trace traitors. If also n is really larger than c (i.e. n > (1 + λ)c for some positive λ) then
the lower bound from Theorem 6.7 says we need at least Ω(c2 + c log2(n)) time to catch pirates.

First we shall discuss an intuitive algorithm that runs in O(c3 log(n)) time. Then we will discuss
a scheme which also runs in O(c3 log(n)) time, but which can be used and improved to finally
form a scheme running in O(c2 + c log(n)) time. This latter scheme is known as the optimal
algorithm in [BPS00], as it asymptotically achieves the lower bound of Theorem 6.7.

6.4.2 The degree algorithm

First of all, we discuss the last algorithm from [BPS00], namely the degree algorithm. This
algorithm is arguably the easiest one to understand from the algorithms described in this paper,
which is why we explain this one first.

The idea behind the algorithm is as follows. We maintain a graph similar to the Fiat-Tassa
scheme, with cliques of size 2 and one special vertex I. In this graph however we will have more
edges than just these edges connecting the pairs of vertices. In the degree algorithm we further
have only c + 1 colors instead of 2c + 1, so we assign certain pairs of vertices (which are not
connected in any way) the same color. If a color belonging to only one vertex is received, then
we again simply split this vertex in two and add an edge inbetween, as in the Fiat-Tassa scheme.
And in case the output color belongs to two vertices, we simply add an edge between the two
vertices.

The important observation we use for this algorithm is that if some vertex has c+ 1 neighbors,
i.e. some vertex is connected to c+ 1 other vertices, then this vertex itself must contain a traitor.
After all, if this vertex does not contain a traitor, then because of these edges, these c + 1
neighbors in the graph each contain at least 1 traitor, giving a total of at least c+ 1 traitors,
which is a contradiction. So the idea of adding edges to the graph is to increase the degrees
of vertices in the graph, such that eventually vertices will have too high degree to contain no
traitors.

One problem we run into is that we do not know c and during the Fiat-Tassa algorithm we only
know a lower bound c∗ on the number of traitors. If some vertex has a degree of more than c∗,
then this vertex only contains a pirate provided that c∗ = c. Therefore if some vertex has degree
more than c∗, we instead place this vertex in a waiting room. This vertex then stays there until
either (a) we have verified that c = c∗, or (b) we have established that c > c∗, or (c) the unique
color assigned to this vertex is output by the colluders. In cases (a) and (c) we would then split
this vertex and insert it back into the graph, while if (b) is the case, we insert the vertex back
into I and start over with c∗ increased by one.

Besides using a waiting room, we now have to maintain two estimates of c: we write c∗ for a
lower bound on the number of traitors (and the current estimate for the total number of traitors),

75

and we write ĉ for a lower bound on the number of traitors in distinct vertices of G, given that
c∗ = c. The variable c∗ can be compared to the same variable in the Fiat-Tassa scheme. The
variable ĉ is used for determining if c∗ is a correct guess. An invariant for the algorithm is that
ĉ ≤ c∗, so if at some point we get that ĉ > c∗ (which can occur if our guess c∗ for c was wrong),
then we know that c ≥ c∗ + 1, so that we can increase our guess c∗ by one. The vertices that
were in the waiting room are then added back to the main area and into the special vertex I,
while in the main area no further edges or vertices are removed or changed. We then repeat the
whole procedure, but with a better lower bound c∗.

Finally we also write ĉ1 for the contribution to ĉ from the main area, and ĉ2 for the contribution
to ĉ from the waiting room, i.e. ĉ = ĉ1 + ĉ2. Thus in the main area we have 2ĉ1 + 1 vertices,
according to the Fiat-Tassa scheme, and in the waiting room we have ĉ2 vertices, each suspected
to contain a traitor.

6.4.2.1 Color distribution

One problem we still have to solve is that in the main area we have 2ĉ1 + 1 vertices, and some
complex network of edges between the vertices, and that we want to assign these colors to (pairs
of) vertices that are not connected. And since we want to assign every vertex in the waiting
room a distinct color, we only have ĉ1 + 1 colors for these 2ĉ1 + 1 vertices. For this we need
assurance that we can always find such pairs of unconnected vertices. If we investigate what
this actually means, we see that these unconnected pairs of vertices correspond to connected
vertices in the complement graph (i.e. v ∼ w in the complement of G if and only if v 6∼ w in G).
Then we can also translate these pairs to a matching in this complement graph, consisting of ĉ1
edges. For this we can then use the following Lemma.

Lemma 6.10. [BPS00, Lemma 6.1] Let H be a graph with at least 2m vertices, each having
degree at least m. Then there exists a matching in H of size at least m.

Proof. We prove that given a matching M of size m∗ < m in this graph H, we can make a
matching of size m∗ + 1 in this same graph. Starting with m∗ = 0, by induction it then follows
we can find a matching of size at least m in at most m steps.

Let v and w be two vertices in H which are not matched by M , and let Nv and Nw denote the sets
of neighbors or v and w respectively. If v is connected to w in H, we can simply add v ∼ w to the
matching and we are done. Also if some x ∈ Nv ∪Nw is not matched by M , then we can trivially
improve the matching by adding this edge v ∼ x or w ∼ x. So if M = {xi ∼ yi | i = 1, . . . ,m∗}
for some xi, yi, then we can assume that Nv, Nw ⊆ {x1, y1, . . . , xm∗ , ym∗} and v 6∼ w, as otherwise
we would already be able to improve the matching. We now prove that |Nv ∩ {xi, yi}|+ |Nw ∩
{xi, yi}| ≤ 2 for all i, so that |Nv|+ |Nw| =

∑m∗

i=1 |Nv ∩ {xi, yi}|+ |Nw ∩ {xi, yi}| ≤ 2m∗. This is
then a contradiction with |Nv|, |Nw| ≥ m, i.e. |Nv|+ |Nw| ≥ 2m > 2m∗, proving the result.

Let xi and yi be two vertices matched to eachother by M . If |Nv ∩{xi, yi}|+ |Nw ∩{xi, yi}| > 2,
then w.l.o.g. we can assume |Nv ∩{xi, yi}| = 2 and |Nw ∩{xi, yi}| ≥ 1, i.e. v ∼ xi, yi and w ∼ xi.
But then we can improve the matching by removing the edge xi ∼ yi and adding the edges
v ∼ yi and w ∼ xi to M , increasing the size of the matching by 1. This proves the result.

Lemma 6.10 shows that with m = c∗− ĉ2 ≥ ĉ1 we can always find a color assignment of c∗− ĉ2 +1
colors to the 2ĉ1 + 1 vertices in the main area such that no two vertices that are connected
receive the same color. Adding the ĉ2 colors used for the vertices in the waiting room, we get a
total of at most c∗ − ĉ2 + ĉ2 + 1 = c∗ + 1 ≤ c+ 1 colors.

76

6.4.2.2 Graph reorganization

The most important thing we have not yet described in full is how exactly the graph is updated
following the pirates’ response. As most of the scheme has already been explained above, we do
not go into detail in every step again, and simply give the algorithm.

Algorithm 6.11. [BPS00, Section 6.2] Start with t = 0 and start with a graph Γ = Γ1 ∪ Γ2,
where Γ1 = (V1, E ∪ F) corresponds to the main area and Γ2 = (V2, ∅) to the waiting room. The
set E corresponds to the Fiat-Tassa edges, consisting of ĉ1 distinct edges, while the edges from
F are the edges added to the graph when two non-connected vertices receive the same color and
that color is output. Initially V1 = {I}, I = U,E = ∅, F = ∅, V2 = ∅. Set c∗ = ĉ = ĉ1 = ĉ2 = 0.
For each round t, we do the following.

1. If only one vertex X ∈ Γi received the output color, and |X| = 1, then the user in this
vertex is guilty. Disconnect this user and set c∗ := c∗ − 1, ĉi := ĉi − 1.

(a) If X ∈ Γ1 and X = I, set I := ∅ and set c∗ = c∗ + 1.

(b) If X ∈ Γ1 and X 6= I, then X is connected to some vertex Y in E. Add Y to I, and
remove X and Y from the graph.

(c) If X ∈ Γ2, set ĉ1 := ĉ1 + 1 and ĉ2 := ĉ2 − 1.

2. If only one vertex X ∈ Γi received the output color, and |X| > 1, then we can split X into
two non-empty subsets X ′ and Y ′, containing d|X|/2e and b|X|/2c users respectively. Add
the vertices X ′, Y ′ to the graph, and add the edge X ′ ∼ Y ′ to E. Set ĉi := ĉi − 1 and set
ĉ1 := ĉ1 + 1.

(a) If X ∈ Γ1 and X = I, update I := ∅, and set ĉ1 := ĉ1 + 1 and c∗ = c∗ + 1.

(b) If X ∈ Γ1 and X 6= I, then X is connected to some vertex Y in E. Add Y to I, and
remove X and Y from the graph.

(c) If X ∈ Γ2, set ĉ1 := ĉ1 + 1 and ĉ2 := ĉ2 − 1.

3. If two non-connected vertices X,Y ∈ Γ1 received the output color, add the edge X ∼ Y to
F and do the following.

(a) Any vertex Z ∈ Γ1 of degree larger than c∗ − ĉ2 is removed from Γ1 and placed into
Γ2. We then set ĉ2 := ĉ2 + 1 and if Z = I, we create a new vertex I = ∅.

(b) Repeat the above until all vertices have degree at most c∗ − ĉ2. Note that the value of
c∗ − ĉ2 decreases after placing a vertex Z into Γ2, which may cause other vertices to
have a too high degree now.

(c) After all vertices have degree at most c∗ − ĉ2, the graph Γ1 is messed up. Add all
vertices which no longer have a neighbor in E to I, and update ĉ1 according to the
new number of two-cliques in Γ1.

4. If after any of the above steps ĉ > c∗, we set c∗ := c∗ + 1 and add all vertices from Γ2 to I.

Some of the actions taken during this algorithm can be compared to the Fiat-Tassa algorithm,
where the same steps are taken. Basically we semi-disconnect vertices which have a too high
degree by placing them in the waiting room until we know whether (1) we were right and the
vertex contains a traitor, or (2) we were wrong and c∗ was a bad estimate, in which case we
increase c∗ by one. If we were right and the vertex contains a traitor, we take the same action as
in the Fiat-Tassa algorithm, by splitting the vertex in two and adding it as a new clique of size
two in the main area. Figures 6.17 to 6.32 give an example of how the algorithm makes progress.

77

1, 5

6, 12

7, 9

2, 8 10

3, 13 4, 11

Figure 6.17: There are 13 users in the system,
and using a Fiat-Tassa-like graph we have es-
tablished that there are at least c∗ = 3 traitors.
Therefore we use only 4 colors for the 7 ver-
tices. At this point there is no waiting room, and
ĉ1 = 3, ĉ2 = 0.

1, 5

6, 12

7, 9

2, 8 10

3, 13 4, 11

Figure 6.18: After the color given to users 1, 2, 5
and 8 was output, we added an edge and con-
structed a new coloring of the vertices with 4
colors. We again use a matching of size 3 on the
complement graph of the main area.

1, 5

6, 12

7, 9

2, 8 10

3, 13 4, 11

Figure 6.19: The color given to users 2, 4, 8, 11
was output, and another edge has been added to
the graph. We still suspect there are 3 traitors.

1, 5

6, 12

7, 9

2, 8 10

3, 13 4, 11

Figure 6.20: Another edge was added to the
graph, but all vertices still have degree at most
3. And we can still find a good coloring of the
vertices.

1, 5

6, 12

7, 9

2, 8 10

3, 13 4, 11

Figure 6.21: After another edge was added, the
degree of the vertex with users 2 and 8 is now
higher than 3, i.e. 4. So this vertex will be moved
to the waiting room, and its neighbor will be added
to I.

1, 5

6, 12
7, 9 2, 8

10

3, 13 4, 11

Figure 6.22: After the reorganization, the sus-
pected number of traitors in the main area has
reduced to 2. All vertices there have a degree of at
most 2, hence no further reorganization is needed.
Now ĉ1 = 2 and ĉ2 = 1.

1, 5

6, 12
7, 9 2, 8

10

3, 13 4, 11

Figure 6.23: The process continues with another
edge added. Now vertex {4, 11} has degree 3,
which is more than ĉ1 = 2. Therefore this vertex
will be moved to the waiting room.

1, 5

2, 8

3, 13

4, 116, 7, 9
10, 12

Figure 6.24: After the reorganization, the sus-
pected number of traitors in the main area has
reduced to ĉ1 = 1. However, all vertices have a
degree of at most 1, hence no further reorganiza-
tion is needed.

78

1, 5

2, 8

3, 13

4, 116, 7, 9
10, 12

Figure 6.25: Another edge was added, after
which vertex {1, 5} has degree 2. Since at this
point ĉ1 = 1 < 2 (and ĉ2 = 2), this vertex will
also be moved to the waiting room.

1, 52, 8 4, 113, 6, 7, 9
10, 12, 13

Figure 6.26: Now we have that c∗ = ĉ2 = 3 and
ĉ1 = 0, i.e. if c = 3 then the three vertices in
the waiting room each contain a traitor while the
main area contains no traitors.

3, 6
7, 9

10, 12
13

1, 2, 4
5, 8, 11

Figure 6.27: The pirates have output the color
gray, associated to vertex I. Our guess that c =
c∗ = 3 was therefore wrong: c must be at least 4.
The vertex I was split as usual, and the vertices
in the waiting room were added to I.

3, 6
7, 9

10, 12
13

1, 2, 4

∅

5, 8
11

Figure 6.28: The color gray was output again,
so I is again split in two. Since we know that
c ≥ 4, we use 5 colors, i.e. one for each vertex.
Here for the first time this fifth color is used.

3, 6
7, 9

10, 12
13

5, 8
11

1, 2

4

Figure 6.29: The pirates again output the color
gray, associated to the vertex I. We split this
vertex, as in the Fiat-Tassa scheme, and create
a new empty vertex I.

3, 6
7, 9

10, 12
13

5, 8

11

1, 2

4

∅

Figure 6.30: Since we know that c ≥ c∗ = 4,
we can use 5 colors to give each vertex a distinct
color. Doing this is not necessary, but using
the maximum number of colors available does
decrease the running time slightly.

3, 6

7, 9

10, 12
13

5, 81, 2

4 11

Figure 6.31: After some more steps we again
have 7 vertices. Some more edges have been added
to the graph, since we were required to give pairs
of vertices the same color again, and these colors
were output.

3, 6

7, 9

1, 2

12

13

10

114

5, 8

Figure 6.32: Finally we end up with a graph
that looks very similar to the start, but with 4
pairs of vertices instead of 3. The process contin-
ues after this, until all pirates are disconnected.

79

Theorem 6.12. [BPS00, Theorem 6.3] The degree algorithm traces any coalition of any size c
in at most O(c3 log2(n)) time using at most c+ 1 colors.

Proof. For the amount of colors used, see Subsubsection 6.4.2.1 on the color distribution in this
algorithm, where it is shown we only need at most c∗ + 1 colors at any time. As c∗ is at most c
at any time in the algorithm, we only need at most c+ 1 colors.

For the time needed, first note that the value of c∗ is always increased by at least 1, when it is
increased. Thus proving that for every c∗ between 0 and c the time taken is at most O(c2 log2(n))
proves the result.

If c∗ is not increased at some point in time, then either (1) a vertex was split (or the single user
in it is disconnected), or (2) a vertex is moved to the waiting room, or (3) an edge is added to
the graph. If there are more vertices in the waiting room than c∗, then c∗ is increased by one.
Therefore, for a single value of c∗, only c∗ = O(c) vertices can be moved to the waiting room.
However, when splitting a vertex we may move a vertex from the waiting room back to the main
area. Since a vertex is always split in two roughly equal-sized halves, the number of times a
vertex can be split is O(log2(n)). So only O(c log2(n)) times can vertices be moved from and to
the waiting room for a fixed value of c∗.

Finally there is the case of adding edges. We may add lots of edges before moving vertices from
one area to another. However, in the main area there are always at most 2c+ 1 vertices, hence
at most O(c2) edges. When a vertex is moved to the waiting room, all edges incident with this
vertex and all edges incident with its Fiat-Tassa neighbor are removed from the graph, thus
removing at most O(c) edges. After splits, vertices may be moved back to the main area, when
again we can start adding edges until we reach the limit. As there are at most O(c log2(n))
splits, vertices are removed from the main area at most O(c log2(n)) time, thus removing at
most O(c2 log2(n)) in total. Hence there are at most O(c2 + c2 log2(n)) edges added to the graph
and at most O(c log2(n)) steps involve vertices being moved from or to the waiting room. Thus
in total we get at most O(c2 log2(n)) time needed for each value of c∗, proving the result.

The running time of this algorithm is cubic in the number of colluders and logarithmic in
the number of users. Compared to the Fiat-Tassa scheme this is of course very bad, with an
additional factor of c2 added to the running time. The gain is that we now only use an alphabet
of size at most c+ 1 rather than 2c+ 1. This however is only a factor 2 improvement, so the
scheme is only useful if the alphabet size is a really big issue while the running time is not.
Moreover we disregarded the constants in the running time here, while for the Fiat-Tassa scheme
the constant is roughly 1 in the worst case.

6.4.3 The clique algorithm

We now move on to a different algorithm, suggested in [BPS00, Section 3]. Berkman et al. call
it the clique algorithm, as it is based on getting large cliques rather than getting vertices with
high degrees, as in the degree algorithm. An extension of the clique algorithm later also leads to
their optimal algorithm in [BPS00, Section 4], which (almost) achieves an optimal asymptotic
running time.

In this report we will not give an elaborate analysis of the algorithm. The bookkeeping done in
the algorithm is quite complicated and is only necessary to make sure the details check out. The
idea behind the algorithm however is easier to sketch and explain, which we will do. Therefore
our explanation will leave certain issues unsolved and untreated. For these details we refer the
reader to the original paper, [BPS00], which does discuss these details. For completeness we

80

do give the full algorithm as in [BPS00], but without the detailed explanation of the zones and
blocks as in [BPS00] one may not completely understand the algorithm.

First of all, as the name suggests and as we mentioned a few lines earlier, the clique algorithm is
based on getting large cliques of connected vertices. The first reason we want large cliques is
simple: any k-clique contains at least k − 1 pirates. This can be proven in one line2: If there
are at most k − 2 pirates, then some two of these k vertices do not contain a pirate, which
contradicts the fact that they are connected by an edge. The second reason is perhaps even
more obvious: we can easily color a k-clique with only k colors. This is also a ’good’ coloring,
i.e. no three vertices get the same color, and no two connected vertices get the same color.
Therefore we can again split single vertices and add an edge between pairs of non-connected
vertices once we receive the pirate output, as we also did with the Fiat-Tassa algorithm and the
Berkman-Parnas-Sgall degree algorithm. And since we use only at most k colors for a k-clique
containing k − 1 pirates, the pirates-per-color rate goes up towards 1 as k increases. So bigger
cliques are much appreciated.

Now how exactly does the algorithm work? Well, instead of running the Fiat-Tassa algorithm
with connected pairs of vertices, we basically run the algorithm with the pairs of vertices replaced
by pairs of cliques. Instead of having disjoint cliques of 2 vertices, we now have disjoint blocks,
each containing 2 cliques. These cliques may be interconnected in some way, but the only thing
we really need is that these cliques are really fully connected cliques.

6.4.3.1 Color distribution

For the colors, we assign a subset of the colors to each block of two cliques. If the two cliques,
say Qa and Qb, contain a and b vertices respectively, then we know that there are at least
(a−1) + (b−1) = a+ b−2 traitors in this block. To use only as many colors as there are traitors,
we therefore assign a+ b− 2 colors to this block. Now suppose a > b. For a good coloring we
have to give all vertices in Qa a different color, which is also what we do. For Qb we then have
only b− 2 unused colors left. We color b− 2 vertices with a new, different color, and color the
remaining two vertices with two of the first a colors, in such a way that no two interconnected
vertices get the same color. For this we need that there exist vertices X1, X2 ∈ Qa, Y1, Y2 ∈ Qb
such that X1 6∼ Y1 and X2 6∼ Y2. This is nearly always the case; only when also the cliques Qa
and Qb are (almost) fully connected inbetween this will give problems. But if Qa and Qb are
fully connected, or if some subset Q̂b ⊂ Qb is fully connected with Qa, then we in fact have a
bigger clique and the algorithm would have taken appropriate actions already.3

6.4.3.2 Graph reorganization

Using this color assignment, we again perform the same actions as in the Fiat-Tassa algorithm
and the degree algorithm. If the color output by the pirate belongs to two non-connected vertices,
then we add an edge inbetween. If some bigger cliques arise, we then also have to reorganize the
graph, to make sure we can (1) continue with another good coloring in the next round, and (2)
make progress as well. The algorithm starts with small cliques, and ’progress’ is either adding
more edges, replacing smaller cliques by bigger cliques or splitting/disconnecting a vertex.

2The actual number of lines in this report depends on the formatting, but the proof consists of only one
reasonably short sentence which could easily fit on just one line.

3This ’appropriate actions’ is something that is fully explained in the original paper, but which we will not
discuss here. When such a larger clique shows up, the graph has to be reorganized, which involves a lot of
bookkeeping. In the end we then again have blocks of two cliques, but one of the cliques has increased in size,
which is the progress we made.

81

Algorithm 6.13. [BPS00, Section 3.2] Start with t = 0 and start with a graph Γ = (V,E).
Initially V = {I}, I = U,E = ∅. Set c∗ = 0 and start with one block, consisting of only the clique
I. For each round t, we do the following.

1. If only one vertex X received the output color, and |X| = 1, then the user in this vertex is
guilty. Disconnect this user and set c∗ := c∗ − 1.

(a) If X = I, set I := ∅ and set c∗ = c∗ + 1.

(b) If X 6= I and X was in a clique Q of size 2, then X was in a clique with some vertex
Y . Add Y to I, and remove X and Y from the graph. The other clique R that was
in the same block as Q is now seperately incorporated into the graph.

(c) If X 6= I and X was in a clique Q of size at least 3, then removing X still leaves a
clique of size at least 2. Therefore no further changes are needed.

2. If only one vertex X received the output color, and |X| > 1, then we can split X into two
non-empty subsets X ′ and Y ′, containing d|X|/2e and b|X|/2c users respectively.

(a) If X = I, update I := ∅, and set c∗ = c∗+1. Incorporate the new clique Q′ = X ′ ∼ Y ′
into the graph.

(b) If X 6= I and X was in a clique Q of size 2, then X was in a clique with some vertex
Y . Add Y to I, and remove X and Y from the graph. The new clique Q′ = X ′ ∼ Y ′
will take the place of the clique Q = X ∼ Y in the graph.

(c) If X 6= I and X was in a clique Q of size at least 3, then removing X still leaves a
clique of size at least 2. Seperately incorporate the new clique Q′ = X ′ ∼ Y ′ into the
graph.

3. If two non-connected vertices X,Y received the output color, add the edge X ∼ Y to E
and do the following.

(a) If adding the edge connects I to a clique Q in such a way that Q ∪ I now forms a
clique, then we add I as a vertex to the clique Q, and we create a new vertex I ′ = ∅.
The cliques Q and I ′ now again form a block.

(b) If adding the edge connects two cliques Q and R in such a way that Q ∪ R \ {Z}
forms a clique for some Z, then we create a new clique Q′ = Q∪R \ {Z}. The vertex
Z is added to I, and the clique Q′ is seperately incorporated into the graph.

4. If a new clique Q′ needs to be incorporated into the graph, and I is already in a block with
another clique Q, then we create a new block consisting of Q and Q′, and we let I form a
seperate block of only one clique.

5. If a new clique Q′ needs to be incorporated into the graph, and I is not in a block with
another clique, then we create a new block consisting of I and Q′.

Using this algorithm, we get a scheme which catches any coalition using at most c+ 1 colors. An
example is again given in Figures 6.33 to 6.40. For the running time we get the following result.

Theorem 6.14. [BPS00, Theorem 3.3] The clique algorithm traces any coalition of any size c
in at most O(c3 log2(n)) time using at most c+ 1 colors.

For the running time, we do not give a proof, but we only mention a few things about the proof.
The factor log2(n) again comes from splitting vertices into two in every step. Furthermore, a
factor c comes from the fact that (as in the degree algorithm) at most O(c) edges are removed
when a vertex is split or some reorganization is done. Finally the remaining factor O(c2) comes
from the fact that in the worst case we have to create larger cliques many times before a vertex
is split. In the end this then gives a total of at most O(c3 log2(n)) edges that can be added (and
removed) during the algorithm, giving a running time of O(c3 log2(n)).

82

1, 3

2, 6

4

5, 8

7

9

Figure 6.33: There are 9 users in the system,
and somehow we have obtained two cliques; one
of size 3 and one of size 2. Therefore c∗ = 3 and
we can use 4 colors.

1, 3

2, 6

4

5, 8

7

9

Figure 6.34: The color given to users 4 and 7
was output by the pirates. An edge is added, and
a new coloring using only 4 colors is constructed.

1, 3

2, 6

4

5, 8

7

9

Figure 6.35: The pirates now output the color
assigned to users 4, 5 and 8. We add another
edge, and we construct a new coloring. There is
no larger clique than the triangle yet.

1, 3

2, 6

4

5, 8

7

9

Figure 6.36: Another edge is added to the graph,
after the colluders distributed the color given to
user 2, 6, 7. Still there is no bigger clique than
the triangle, and we continue with another new
color assignment.

1, 3

2, 6

4

5, 8

7

9

Figure 6.37: Finally after another edge has
been added to the graph, we see that vertex {7}
is connected to all vertices from the other clique.
This means that we now have a larger clique of
size 4.

1, 3

2, 6

4 7

5, 8, 9

Figure 6.38: The graph is reorganized: vertex
{7} is now part of the bigger clique, while its
clique-neighbor {5, 8} is added to I. The large
clique will now form a special block with I.

2, 6

4 7

5, 8, 9

1

3

Figure 6.39: This time the output color belonged
to only one vertex, namely {1, 3}. Similar to the
other algorithms, we simply split this vertex into
two smaller ones and added an edge inbetween.
This 2-clique then formed a new block with the
clique of size 3.

2, 6

4 7

5, 8, 9

3

1

Figure 6.40: Similar to the start, we again start
adding edges when the distributed color belong to
pairs of vertices. It may look like we did not make
progress since the start, but we did: there are now
less users in the clique-vertices and more users
in I.

83

6.4.4 The optimal algorithm

Besides the degree algorithm and the clique algorithm, which both run in O(c3 log(n)) time, the
paper [BPS00] also presented an algorithm running in only O(c2 + c log(n)) time. This matches
the lower bound of 6.7, which is why it is called the optimal algorithm in [BPS00]. However,
compared to this optimal algorithm, the analysis from the previous section is peanuts; even in
the journal version, Berkman et al. used over 10 pages to explain the optimal algorithm. This
includes using 4 zones (i.e. not just Γ1 and Γ2 as in the degree algorithm, but Γ1 . . .Γ4), several
blocks of cliques for each zone (the clique algorithm is used as a starting point for this scheme),
and new marks to mark vertices which have a certain property. Especially the fourth zone is
terribly complicated, for which one main algorithm and four subalgorithms are given to prove
the correctness of the claims made about this zone.

Therefore we choose to only give the results about this scheme as claimed by Berkman et al.
This can be summarized in one Theorem as follows.

Theorem 6.15. [BPS00, Theorem 3.3] The optimal algorithm traces any coalition of any size
c in at most O(c2 + c log2(n)) time using at most c+ 1 colors.

Finally we note that Berkman et al. mentioned in [BPS00, Section 7] that the hidden constants
in the running time are large. Adding to that the complexity of the algorithm, one could say
this algorithm is really only useful for large values of c. Even then, one could argue that for
such large values of c, the c2 in the running time plays a larger role than using c more symbols
for the alphabet (as we have to use a ridiculously large alphabet anyway). So then one may
also argue that using the Fiat-Tassa scheme, with small constants, low complexity and only
O(c log(n)) time, is better, even though then one needs an extra c symbols.

6.4.5 Summary

While in [FT01] Fiat and Tassa only mentioned algorithms for q = c + 1 with running times
exponential in c, the paper [BPS00] proposed several schemes with running times polynomial
in c. The first schemes we discussed here had a running time which is cubic in c, while we
mentioned that another scheme was given with a running time only quadratic in c (without
log(n)) and linear in c with a factor log(n). The same paper also presented lower bounds for
such schemes which we discussed earlier, and this optimal algorithm asymptotically matches the
best lower bound up to a constant factor.

For practical reasons however, this optimal algorithm is not really optimal; the hidden constants
are large, and the algorithm is very complex. The degree algorithm and the clique algorithm
however have smaller hidden constants and a lower complexity. These schemes are intuitive and
quite easy to follow, and are easier to analyze. The price we pay for that is a higher running
time.

So if one is looking for deterministic schemes (in a dynamic setting) with a small-as-possible
alphabet size, then this section provides good solutions; both simple ones (degree algorithm,
clique algorithm) and complex but more efficient ones (optimal algorithm).

6.5 Summary

In this chapter we saw how we can efficiently trace traitors deterministically in a dynamic setting.
As the tracing process is deterministic, the minimum alphabet size is c+ 1, and for this alphabet
size Berkman et al. gave three efficient schemes in [BPS00]. Two schemes are relatively simple,

84

but require a runtime which is cubic in c and logarithmic in n. In that sense the third is much
better, with an asymptotic runtime of O(c2 + c log(n)), but this one is highly complex and has
large hidden constants. This third scheme however matches the asymptotic lower bound, which
is why this scheme is called the optimal algorithm.

As Berkman’s lower bounds show, once we switch to an alphabet size of q = c+O(c) the lower
bound on the runtime changes to O(c log(n)). And indeed, Fiat and Tassa showed in [FT01] that
using an alphabet of size 2c+ 1 we can trace all traitors in only O(c log(n)) time. The constant
in this asymptotic runtime is also roughly 1, so this scheme is really efficient for catching any
size coalitions. The downside is however the large alphabet needed.

So the two papers gave solutions to two different problems. Berkman et al. showed how to
efficiently trace a coalition with a minimum alphabet size, while Fiat and Tassa showed how to
get an even better construction, using a bigger alphabet.

85

86

Chapter 7

Probabilistic dynamic schemes

Citations: For writing this chapter, the following articles were used: [Tas05]

7.1 Introduction

In this last chapter of the literature survey we investigate the final class of schemes considered in
this report, namely dynamic schemes that are probabilistic and allow a small error probability.
Similar to the previous chapter, here we again consider the scenario where neither c, nor an
upper bound on c is known in advance. This chapter will be considerably shorter than the earlier
chapters, mainly because only one paper actually considered these types of schemes.

Note that a general principle associated to deterministic/probabilistic schemes also applies here.
While for (both static and dynamic) deterministic schemes we needed an alphabet size of at least
c+ 1, for (static and dynamic) probabilistic schemes we only need an alphabet size of at least 2.

7.2 The Tassa scheme

First we recall that the Fiat-Tassa scheme is a deterministic dynamic scheme to trace all colluders
in O(c log(n)) time, using at most q = 2c+ 1 symbols. For details we refer the reader to Section
6.3, but here we only use the fact that at every time step, the associated graph contains 2c+ 1
vertices, and each vertex gets a different color. So at any time step, the set of users is partitioned
into 2c+ 1 disjoint subsets, and each subset receives some symbol σi, for i = 1, . . . , 2c+ 1.

Next we recall that the cubic Boneh-Shaw scheme is a probabilistic static scheme to trace one
user of any coalition (i.e. of any size c of at most n) with a codelength of O(n3 log(n/ε1)). The
scheme uses a binary alphabet, and has a maximum error probability of ε1 = ε2. In other words:
all n users receive a codeword of length O(n3 log(n/ε1)), and after receiving output from the
pirates, the tracer accuses one of the users, which is part of the coalition with probability at
least 1− ε1.
Using these two schemes, Tassa came up with the following construction for a probabilistic
dynamic scheme. First, we simply apply the Fiat-Tassa scheme with its associated graph as
the (outer) scheme. However, instead of using q = 2c + 1 symbols, we replace the symbols
by codewords from the (inner) Boneh-Shaw scheme. So in each time step of the Fiat-Tassa
scheme we replace a single symbol by a whole Boneh-Shaw codeword. After receiving the forgery
from the pirates, the Fiat-Tassa scheme then performs one single step (e.g. splitting a vertex or
disconnecting a user).

87

Intuitively, one can see that the outer scheme then still requires O(c log(n)) time steps. For
the inner scheme, we see that there are always at most 2c+ 1 subsets, and by identifying these
subsets as users in the Boneh-Shaw scheme we see that we need a Boneh-Shaw scheme with
n ≤ 2c + 1. Thus the codelength for the inner code is roughly O(c3 log(c/ε1)). Without any
additional changes, at every time step we have a maximum error probability of ε1. Therefore in
the worst case the success probability at the end is (1− ε1)O(c log(n)) = 1−O(c log(n))ε1.

Using some further calculations on the probability that the scheme terminates, this is also
roughly Tassa’s result in [Tas05, Theorem 1]: Using this construction, the probability of finishing
in at most O(c4 log(c/ε1) log(n)) time is at least 1− ε1, and the probability of not disconnecting
any innocent users in this process is at least 1−O(c log(n))ε1.

After this, Tassa proposes rescaling some of the variables in the scheme so as to be able to
bound the false positive probability from above by ε1, instead of O(c log(n))ε1. This results
in [Tas05, Theorem 2], which has roughly the same asymptotic codelength/time, but has the
error probability bounded by ε1.

Note that although the paper [Tas05] was published in 2005, Tardos’ better probabilistic
static scheme was published only after [Tas05] was accepted for publication, as Tassa notes
in [Tas05, Section 3]. For the inner code Tassa used the cubic Boneh-Shaw code, which at the
time was the best known code for this purpose. However one can easily get better results using
this same construction, by using the Tardos code as the inner code. This would simply save a
factor c in the asymptotic codelength/runtime.

7.3 Summary

What stands out most about this chapter is its length. To our knowledge only one paper
investigated what we classify as probabilistic dynamic schemes, namely the paper from Tassa
in 2005. In this paper a construction was given by concatenating the Fiat-Tassa scheme as
the outer scheme and the Boneh-Shaw scheme as the inner scheme. The resulting scheme has
the runtime of the Fiat-Tassa scheme (t = O(c log(n))), and at each time step it has the same
codelength as the Boneh-Shaw scheme for n = 2c+ 1 users (so ` = O(c3 log(c/ε1))). In total this
scheme therefore requires t · ` = O(c4 log(c/ε1) log(n)) fingerprinting positions per user before
the whole coalition is caught.

Besides using the Tardos code as the inner code instead of the Boneh-Shaw code, it is clear
that there is still a lot of research to be done in the area of probabilistic dynamic fingerprinting
schemes. Both chapters on deterministic fingerprinting schemes are based on tens of papers,
some of which also give lower bounds to match or approach the best known constructions. For
deterministic dynamic schemes as in Chapter 6 we only considered two papers, but together
these contain four interesting constructions and some lower bounds matching the constructions,
which show that a lot of progress has been made in that area already. For this chapter however
we have only one paper containing one somewhat elementary construction and no lower bounds,
while this area should be the easiest; the tracers get more feedback inbetween because of the
dynamic scenario, and because of the probabilistic setting the scheme is even allowed to make
small errors.

So to end this chapter, we conclude that the area of probabilistic dynamic schemes is still very
much unexplored, and undoubtedly there is room for improvement here.

88

Part II

The Tardos Quadrilogy

89

Chapter 8

The optimal Tardos scheme

8.1 Introduction

As we saw in Chapter 5, the Tardos scheme is one of the most efficient traitor tracing schemes.
The Tardos scheme uses a small alphabet, it requires only few and simple computations, and it
has an (asymptotic) optimal codelength of order O(c2 log(n/ε1)). It is therefore often considered
the most practical static scheme for tracing traitors, if not the most practical overall scheme for
tracing traitors.

While we extensively discussed the original Tardos scheme from [Tar03] in Chapter 5 and we
only briefly mentioned improvements for this scheme, here we will focus on some of these
improvements. We will investigate how we can obtain the best parameters for the Tardos scheme,
while still maintaining provability for the soundness and completeness properties. By combining
the ideas from [SKC08] (a symbol-symmetric accusation function) and [BT08] (making the
analysis as tight as possible) we obtain a construction which achieves better results than both
schemes separately. In fact, the results are optimal for this construction (with this distribution
function and score function), which follows from a result from Skoric et al. [SKC08]

This chapter is organized as follows. In Section 8.2 we first give the construction of the symmetric
Tardos scheme, and compare our results with earlier results from literature. In Sections 8.3 and
8.4 we then prove that the soundness and completeness properties hold under our assumptions
on the parameters. In Section 8.5 we then give results similar to those in [BT08, Section 2.4.5]
on how to find the optimal set of parameters that satisfies the conditions for our proof method
to work, and minimizes the codelength. There we also give such minimal codelengths, for several
values of c and η. Finally in Section 8.6 we prove results for asymptotically large c.

8.2 Construction

First we present the construction of the Tardos fingerprinting scheme, as in [BT08], where we
use auxiliary variables d`, dz, dδ for the codelength `, accusation offset Z and cutoff parameter δ
respectively. The only difference between our construction and that of Blayer and Tassa is in
the score function we use. While Blayer and Tassa used the asymmetric score function from
Tardos’ original scheme, we use the symbol-symmetric score function from Skoric et al.

91

8.2.1 The Tardos fingerprinting scheme

Let n ≥ c ≥ 2 be positive integers, and let ε1, ε2 ∈ (0, 1) be the desired upper bounds for the
soundness and completeness error probabilities respectively. Let us write k = ln(n/ε1) so that
e−k = ε1/n. Let d`, dz, dδ be positive constants, with dδ > 1. Then the symmetric Tardos
fingerprinting scheme works as follows.

1. Initialization

(a) Take the codelength as ` = d`c
2k.

(b) Take the accusation offset parameter as Z = dzck.

(c) Take the cutoff parameter as δ = 1/(dδc), and compute δ′ = arcsin(
√
δ) such that

0 < δ′ < π/4.

(d) For each fingerprint position 1 ≤ i ≤ `, select pi ∈ [δ, 1− δ] independently from the
distribution defined by the following CDF F (p) and PDF f(p):

F (p) =
2 arcsin(

√
p)− 2δ′

π − 4δ′
, f(p) =

1

(π − 4δ′)
√
p(1− p)

. (8.1)

The function f(p) is biased towards δ and 1− δ and symmetric around 1/2.

2. Codeword generation

(a) For each position 1 ≤ i ≤ ` and for each user 1 ≤ j ≤ n, select the ith entry of the
codeword of user j according to P[Xji = 1] = pi and P[Xji = 0] = 1− pi.

3. Accusation

(a) For each position 1 ≤ i ≤ ` and for each user 1 ≤ j ≤ n, calculate the score Sji
according to:

Sji =

+
√

(1− pi)/pi if Xji = 1, yi = 1,

−
√
pi/(1− pi) if Xji = 0, yi = 1,

−
√

(1− pi)/pi if Xji = 1, yi = 0,

+
√
pi/(1− pi) if Xji = 0, yi = 0.

(8.2)

(b) For each user 1 ≤ j ≤ n, calculate the total accusation sum Sj =
∑`

i=1 Sji. User j is
accused if and only if Sj > Z.

Under certain conditions on the parameters d`, dz, dδ, which are specified below, one can prove
soundness and completeness, using (a modified version of) Tardos’ proof construction. Note
that, since this proof method uses several non-tight bounds, it is very well possible that there
exist sets of parameters that do not satisfy these conditions, but still guarantee soundness and
completeness. So if the conditions are not satisfied, we can only conclude that the proof method
does not work in that case.

8.2.2 Results for the asymmetric Tardos scheme

In the original Tardos scheme, and in several papers discussing the Tardos scheme, the score
function is asymmetric in yi, as only the positions with yi = 1 are taken into account for the

92

accusations. The construction of this asymmetric Tardos scheme is the same as in Section 8.2,
but with the scores from (8.2) replaced by:

Sji =

+
√

(1− pi)/pi if Xji = 1, yi = 1,

−
√
pi/(1− pi) if Xji = 0, yi = 1,

0 otherwise.

(8.3)

Blayer and Tassa performed an extensive analysis of this scheme in [BT08], and showed that
under the following assumptions, one can prove soundness and completeness for given c and
η. In these Theorems, the function h : (0,∞) → (12 ,∞) is defined by h(x) = λ if and only if
ex = 1 +x+λx2. The function h−1 : (12 ,∞)→ (0,∞) denotes its inverse function, and is defined
by h−1(x) = (ex − 1− x)/x2.

Theorem 8.1. [BT08, Theorem 1.1] Let the Tardos scheme be constructed as in Section 8.2,
with the asymmetric score function from (8.3). Let dα, r be positive constants, with r > 1

2 , such
that d`, dz, dδ, dα and r satisfy the following two requirements:

dα ≥
√
dδ

h(r)
√
c
, (S1)

dz
dα
− rd`
d2α
≥ 1. (S2)

Then the scheme is ε1-sound.

Theorem 8.2. [BT08, Theorem 1.2] Let the Tardos scheme be constructed as in Section 8.2,
with the asymmetric score function from (8.3). Let s, g be positive constants such that d`, dz, dδ, s
and g satisfy the following two requirements:

1− 2
dδ

π
− h−1(s)s√

dδc
≥ g, (C1)

gd` − dz ≥ η
√

dδ
s2c

. (C2)

Then the scheme is ε2-complete.

Tardos’ original choice of parameters was the following, which allowed him to prove his scheme
is ε1-sound and ε2-complete for all c ≥ 2 and η ≤ √c/4 [Tar03, Theorems 1 and 2]:

d` = 100, dz = 20, dδ = 300, dα = 10, r = 1, s = 1, g =
1

4
. (8.4)

Blayer and Tassa proved that to achieve ε1-soundness and ε2-completeness for all c ≥ 2 and
η ≤ 1, the following choice of parameters is also provably secure [BT08, Section 2.4]:

d` = 85, dz = 15, dδ = 40, dα = 8, r = 0.611, s = 0.757, g = 0.2461. (8.5)

In [SVCT06, Corollary 1], Skoric et al. showed that the following choice of parameters suffices to
prove soundness and completeness for asymptotically large c:

d` → 4π2, dz → 4π, dδ →∞, dα → 2π, r = 1, s = h(1), g → 1

π
. (8.6)

According to the Central Limit Theorem, the scores of innocent users and the total score of
the coalition converge to certain normal distributions. Under the assumption that the scores
behave exactly like these normal distributions, Skoric et al. showed in [SVCT06, Corollary 3]

93

that the following choice of parameters is then sufficient and necessary to prove soundness and
completeness:

d` → 2π2, dz → 2π, dδ →∞. (8.7)

Applying the analysis from Section 8.6 to the asymmetric Tardos scheme, we can prove that the
following choice of parameters is provably sufficient for large c:1

d` → 2π2, dz → 2π, dδ →∞, dα → π, r → 1

2
, s→∞, g → 1

π
. (8.8)

So with Blayer and Tassa’s proof construction, we obtain a 2 times shorter asymptotic codelength
compared to the shortest provable codelength of Skoric et al. for the asymmetric Tardos scheme,
and we achieve the asymptotic optimal codelength for the asymmetric Tardos scheme which
Skoric et al. only achieved when they added the assumption that scores behave like normal
distributions.

8.2.3 Results for the symmetric Tardos scheme

We will prove in Sections 8.3 and 8.4 that with the following assumptions on the parameters, we
can also prove soundness and completeness for the symmetric Tardos scheme.

Theorem 8.3. Let the Tardos scheme be constructed as in Subsection 8.2.1, and let dα, r be
positive constants, with r > 1

2 , such that d`, dz, dδ, dα and r satisfy the requirements from (S1)
and (S2). Then the scheme is ε1-sound.

Theorem 8.4. Let the Tardos scheme be constructed as in Subsection 8.2, and let s, g be positive
constants, such that d`, dz, dδ, s and g satisfy (C2) and the following requirement:

2− 4
dδ

π
− h−1(s)s√

dδc
≥ g. (C1’)

Then the scheme is ε2-complete.

Using the above results, in Section 8.5 we will prove ε1-soundness and ε2-completeness for all
c ≥ 2 and η ≤ 1 for the following set of parameters:

d` = 23.79, dz = 8.06, dδ = 28.31, dα = 4.58, r = 0.67, s = 1.07, g = 0.49. (8.9)

This improves upon the constants from Blayer and Tassa by a factor more than 3.5, and it
improves upon the original Tardos scheme by a factor more than 4. Furthermore, for bigger c
and smaller η the values of d` further decrease, easily leading to a factor 10 improvement over
the original Tardos scheme.

Skoric et al. showed that for asymptotically large c, the following set of parameters is sufficient
for proving soundness and completeness in the symmetric Tardos scheme [SKC08, Corollary 1]:

d` → π2, dz → 2π, dδ →∞, dα → π, r = 1, s = h(1), g → 2

π
. (8.10)

With the added assumption that the scores of innocent users and the joint score of guilty users
are normally distributed, Skoric et al. also showed that the following set of parameters is sufficient
for soundness and completeness, for asymptotically large c [SKC08, Corollary 2]:

d` →
π2

2
, dz → π, dδ →∞. (8.11)

1These results can be obtained by applying the analysis from Section 8.6 to Blayer and Tassa’s original analysis
for the asymmetric Tardos scheme. The main difference is that then one needs g = 1

π
+o(1) instead of g = 2

π
+o(1),

which causes an extra factor 4 for d` and extra factors 2 for dz and dα.

94

Since by the Central Limit Theorem these scores will also converge to normal distributions,
this shows that the asymptotic optimal codelength for the symmetric Tardos scheme is ` =
(π

2

2 +o(1))c2 ln(n/ε1). We show in Section 8.6 that for asymptotically large c, we can actually prove
soundness and completeness with this asymptotic codelength, without any added assumptions.
In the asymptotic case, our construction gives the following parameters:

d` →
π2

2
, dz → π, dδ →∞, dα →

π

2
, r → 1

2
, s→∞, g → 2

π
. (8.12)

Similar to the asymmetric case, we thus get a factor 2 improvement over Skoric et al.’s best
provable asymptotic codelength, and we achieve the asymptotic optimal codelength which Skoric
et al. only proved with the added assumption that the scores behave like normal distributions.
This also improves upon results from Nuida et al. in [NFH+09], who showed that with certain
discrete distribution functions F , one can prove secureness for ` ≈ 5.35c2 ln(n/ε1) for large c.
With our construction, we show a codelength of ` ≈ 4.93c2 ln(n/ε1) is provably secure for large c.

8.2.4 Integral codelengths

One detail we have not taken care of and which is often ”swept under the carpet” in other
literature, is that the codelength ` by definition has to be integral. In the construction of the
Tardos scheme however, we said we take ` = d`c

2 ln(n/ε1), while ln(n/ε1) and d` may not be
integral. To solve the problem of non-integral codelengths, Tardos rounded up ln(n/ε1) and took
d` = 100 in his original scheme. Blayer and Tassa also rounded up ln(n/ε1) and took d` = 85,
presumably also to guarantee that ` is integral2. However, rounding up d` and ln(n/ε1) could
drastically increase the codelength. For example, suppose n = 106, ε1 = ε2 = 0.01, and c = 25.
Then η = 0.25 and ln(n/ε1) ≈ 18.42, and numerical optimizations give d` ≈ 8.18. Without
rounding we would get a codelength of ` ≈ 94155, while with rounding we get `′ = 106875. So
then the codelength `′ is more than 13.5% higher than `, only because we rounded up both
ln(n/ε1) and d`.

Instead of rounding up inbetween, rounding up the entire codelength to `′ = dd`c2 ln(n/ε1)e
makes more sense. The codelength is then increased by less than 1 symbol, so we hardly notice
the difference in the codelength. However, the proofs we give in Section 8.3 and 8.4 are based
on ` = d`c

2 ln(n/ε1), which corresponds to using d` = `/(c2 ln(n/ε1)). If we take `′ = d`e, then
we get d′` = d`e/(c2 ln(n/ε1)) > d` (for ` /∈ N), so that with the same parameters Z and δ we
may not be able to prove security anymore. In particular, equation (S2) might not be satisfied if
d` is increased, since (S2) implies that 4rd` ≤ d2z. Increasing the left hand side may violate this
bound, if we do not also increase dz.

The following Theorem takes care of this minor problem, by showing that if we can find a
solution to (S1), (S2), (C1’), (C2) with a fractional codelength `, then we can also find a solution
to these inequalities with the integral codelength d`e. In particular, we show which scheme
parameters `, Z and δ one could take to achieve this result.

Theorem 8.5. Let the Tardos scheme be constructed as in Section 8.2, and let
(d`, dz, dδ, dα, r, s, g) be a septuple satisfying conditions (S1), (S2), (C1’), (C2) giving scheme
parameters `0 = d`c

2 ln(n/ε1), Z0 = dzc ln(n/ε1) and δ0 = 1/(dδc). Then the Tardos scheme
from Subsection 8.2 with parameters

` = d`0e, Z = Z0 +
g

c
(d`0e − `0) , δ = δ0 (8.13)

is ε1-sound and ε2-complete.

2Numerical optimizations show that even a parameter set with d` ≈ 81.25 exists that satisfies all requirements
of Blayer and Tassa.

95

Proof. Let us write ω = d`(d`0e − `0)/`0. We prove that if the equations hold for
(d`, dz, dδ, dα, r, s, g), then they also hold for (d′`, d

′
z, dδ, d

′
α, r, s, g), where d′` = d` + ω, d′z =

dz + gω, d′α = (d′z +
√

(d′z)
2 − 4rd′`)/2. Since for this set of parameters we get `, Z and δ as in

(8.13), the result then follows.

First note that since dδ, s and g did not change, both sides of inequality (C1’) remain the same
and this inequality is still satisfied. For inequality (C2), note that both sides also remained the
same, since gd′` − d′z = g(d` + ω)− (dz + gω) = gd` − dz. For (S2), we rewrite this inequality as
a quadratic inequality in dα:

d2α + (−dz)dα + rd` ≤ 0. (8.14)

This inequality is satisfied if dα lies between the two roots of d2α + (−dz)dα + rd` = 0, which
therefore must exist. These roots exist if and only if (d′z)

2 − 4rd′` ≥ 0. Since we know that
d2z − 4rd` ≥ 0 the inequality follows if

(d′z)
2 − 4rd′` = (d2z − 4rd`) + (2gdz + g2ω2 − 4r) ≥ d2z − 4rd` ≥ 0. (8.15)

From (S2) and (C2) we know that g(d2z) ≥ g(4rd`) ≥ 4rdz, i.e. gdz ≥ 4r. So it follows that
2gdz + g2ω2 ≥ 4r, which proves the second inequality. The third inequality then follows from
(S2).

Finally for (S1), we prove that d′α ≥ dα, while the right hand side remains the same, so that this
inequality is still satisfied. Note that dα is also at most the rightmost root to (8.14), so d′α − dα
is bounded by

d′α − dα ≥
d′z +

√
(d′z)

2 − 4rd′`
2

− dz +
√
d2z − 4rd`
2

≥ gω

2
≥ 0. (8.16)

Here the second inequality follows from earlier calculations that (d′z)
2 − 4rd′` ≥ d2z − 4rd`. So

this choice of d′α is at least as high as dα, so inequality (S1) is satisfied. This completes the
proof.

8.3 Soundness

Here we will prove Theorem 8.3, i.e. prove the soundness property, under the assumptions (S1)
and (S2). We will closely follow the proof of soundness of Blayer and Tassa of [BT08, Theorem
1.1]. We will first prove an upperbound on E

[
eαSj

]
, with α = 1/(dαc), and then use this result

to prove upper bounds on P[j ∈ σ(~y)] for innocent users j, and P[σ(ρ(X)) 6⊆ C].

Lemma 8.6. Let dα and r be positive constants, with r > 1
2 , such that dδ, dα and r satisfy

Equation (S1). Let j be an innocent user, and let Sj be the user’s score in the Tardos scheme
from Section 8.2. Let α = 1/(dαc). Then

E~y,X,~p
[
eαSj

]
≤ e−rα2`. (8.17)

Proof. First we fill in Sj =
∑`

i=1 Sji and use that Sj does not depend on Xj′i for j′ 6= j to get

E~y,X,~p
[
eαSj

]
= E~y, ~Xj ,~p

[∏̀

i=1

eαSji

]
=
∏̀

i=1

Eyi,Xji,pi
[
eαSji

]
. (8.18)

Since Sji <
√

1/δ =
√
dδc it follows that αSji <

√
dδ/(dα

√
c). From (S1) we know that√

dδ/(dα
√
c) ≤ h(r) for our choice of r, hence αSji < h(r). From the definition of h we know

that ew ≤ 1 + w + rw2 exactly when w ≤ h(r). Using this with w = αSji we get

E
[
eαSji

]
≤ E

[
1 + αSji + r(αSji)

2
]

= 1 + αE[Sji] + rα2E[S2
ji]. (8.19)

96

We can easily calculate E[Sji] and E[S2
ji], as yi and Xji are independent for innocent users j. As

in [SKC08, Lemmas 2 and 3], we obtain

E[Sji] = 0, E[S2
ji] = 1. (8.20)

So it follows that E
[
eαSji

]
≤ 1 + rα2 ≤ erα

2
, and E~y,X,~p

[
eαSj

]
≤ erα

2`, which was to be
proven.

Proof of Theorem 8.3. We prove that the probability of accusing any particular innocent user
is at most ε1/n. Since there are at most n innocent users, the probability of not accusing any
innocent users is then at least (1− ε1/n)n ≥ 1− ε1, which then proves the scheme is ε1-sound.

Since a user is accused if and only if his score Sj exceeds Z, we need to prove that P[Sj > Z] ≤ ε1/n
for innocent users j. First of all, we write α = 1/(dαc), and we use the Markov inequality and
Equation (8.17) from Lemma 8.6 to obtain

P[j ∈ σ(~y)] = P[Sj > Z] = P
[
eαSj > eαZ

]
≤ e−αZE

[
eαSj

]
≤ e−αZ+rα2`. (8.21)

Since we want to prove that P[j ∈ σ(~y)] ≤ ε1/n, the proof would be complete if e−αZ+rα
2` ≤

e−k ≤ ε1/n, i.e. if −αZ + rα2` ≤ −k. Filling in α = 1/(dαc), Z = dzck, ` = d`c
2k, and dividing

both sides by −k, we get

dz
dα
− rd`
d2α
≥ 1. (8.22)

This is exactly inequality (S2), which was assumed to hold. This completes the proof.

Compared to the original proof in [BT08], this proof has barely changed. The only difference
is that now the scores are counted for all positions i, instead of only those positions where
yi = 1. However, since in the proof in [BT08] this number of positions was bounded by `, the
result remains the same. This explains why we can prove ε1-soundness with the symmetric score
function under the same assumptions (S1), (S2) as in [BT08].

8.4 Completeness

For the proof of Theorem 8.4, we will again closely follow the proof of Blayer and Tassa
of [BT08, Theorem 1.2], and make changes where necessary to incorporate the symbol-symmetric
score function. We first give a Lemma to bound the expectation value of E~y,X,~p

[
e−βS

]
with

β = s
√
δ/c and S =

∑
j∈C Sj , and then use this Lemma to prove completeness.

Lemma 8.7. Let s and g be positive constants such that dδ, s and g satisfy (C1’). Let β = s
√
δ/c,

let C be a coalition of size c, and let S =
∑

j∈C Sj be their total coalition score in the Tardos
scheme from Section 8.2. Then

E~y,X,~p
[
e−βS

]
≤ e−gβ`. (8.23)

Proof. First, we write the total accusation sum of all colluders together as follows:

S =
∑̀

i=1

c∑

j∈C
Sji =

∑̀

i=1

yi

(
xiqi −

c− xi
qi

)
+
∑̀

i=1

(1− yi)
(
c− xi
qi
− xiqi

)
. (8.24)

97

Here xi is the number of ones on the ith positions of all colluders, yi is the output symbol of the
pirates on position i, and we introduced the notation qi =

√
(1− pi)/pi. Following the analysis

from e.g. Blayer and Tassa, and Tardos, but using that Si = (1− yi)
(
c−xi
qi
− xiqi

)
for positions

i where yi = 0 (instead of Si = 0, as with the asymmetric score function), we can bound the
expectation value by

E~y,X,~p
[
e−βS

]
≤
(

c∑

x=0

(
c

x

)
Mx

)`
, (8.25)

where

Mx =

E0,x if x = 0,

E1,x if x = c,

max(E0,x, E1,x) otherwise,

(8.26)

and, for some random variable p distributed according to F ,

E0,x = Ep
[
px(1− p)c−xe−β

(
c−x
q
−xq

)]
, (8.27)

E1,x = Ep
[
px(1− p)c−xe−β

(
xq− c−x

q

)]
. (8.28)

Now, using β = s
√
δ/c, we bound the exponents in E0,x and E1,x as follows.

−s =
−βc√
δ
≤ −βcq ≤ −β

(
xq − c− x

q

)
≤ βc

q
≤ βc√

δ
= s. (8.29)

So |β(xq−(c−x)/q)| ≤ s for our choice of β. So we can use the inequality ew ≤ 1+w+h−1(s)w2

which holds for all w ≤ s, with w = ±β(xq − (c− x)/q), to obtain

E0,x ≤ Ep

[
px(1− p)c−x

(
1 + β

(
xq − c− x

q

)
+ h−1(s)β2

(
xq − c− x

q

)2
)]

, (8.30)

E1,x ≤ Ep

[
px(1− p)c−x

(
1− β

(
xq − c− x

q

)
+ h−1(s)β2

(
xq − c− x

q

)2
)]

. (8.31)

Introducing more notation, this can be rewritten to

E0,x ≤ F0,x + βF1,x + h−1(s)β2F2,x, (8.32)

E1,x ≤ F0,x − βF1,x + h−1(s)β2F2,x, (8.33)

where

F0,x = Ep
[
px(1− p)c−x

]
, (8.34)

F1,x = Ep
[
px(1− p)c−x

(
xq − c− x

q

)]
, (8.35)

F2,x = Ep

[
px(1− p)c−x

(
xq − c− x

q

)2
]
. (8.36)

We first calculate F1,x explicitly. Writing out the expectation value and using the definition of
f(p) from (8.1), we get

F1,x =
1

π − 4δ′

∫ 1−δ

δ
px(1− p)c−x

(
x

p
− c− x

1− p

)
dp (8.37)

98

The primitive of the integrand is given by I(p) = px(1− p)c−x, so we get

F1,x =
I (1− δ)− I(δ)

π − 4δ′
=

(1− δ)xδc−x − δx(1− δ)c−x
π − 4δ′

. (8.38)

For 0 < x < c, we bound F1,x from above and below as

−δx(1− δ)c−x
π − 4δ′

≤ F1,x ≤
(1− δ)xδc−x
π − 4δ′

. (8.39)

Using these bounds for Mx, with 0 < x < c, we get

Mx ≤ F0,x + β
max(δx(1− δ)c−x, (1− δ)xδc−x)

π − 4δ′
+ h−1(s)β2F2,x. (8.40)

Since δ < 1− δ, the maximum of the two terms is the first term when 0 < x ≤ c/2, and it is the
second term when c/2 < x < c. Note that this bound is different from the one of Blayer and
Tassa, since in their analysis they do not have this maximum over two terms, but just the first
of these two terms. We cannot prove the same upper bound as Blayer and Tassa, and therefore
our bound for Mx, 0 < x < c, is slightly weaker than Blayer and Tassa’s.

For the positions where the marking assumption applies, i.e. x = 0 and x = c, we do not use the
bounds on F1,x, but use the exact formula from (8.38) to obtain

M0 ≤ F0,0 − β
(1− δ)c − δc
π − 4δ′

+ h−1(s)β2F2,0, (8.41)

Mc ≤ F0,c − β
(1− δ)c − δc
π − 4δ′

+ h−1(s)β2F2,c. (8.42)

The value of Mc is the same as that of Blayer and Tassa, but whereas Blayer and Tassa had
M0 = F0, we get a lower upper bound on M0. This is essentially the reason why with the
symmetric score function we get shorter codelengths than Blayer and Tassa.

Substituting the bounds on Mx in the summation over Mx from (8.25) gives us

c∑

x=0

(
c

x

)
Mx ≤M0 +Mc +

c−1∑

x=1

(
c

x

)
Mx (8.43)

≤
(
F0,0 − β

(1− δ)c − δc
π − 4δ′

+ h−1(s)β2F2,0

)
(8.44)

+

(
F0,c − β

(1− δ)c − δc
π − 4δ′

+ h−1(s)β2F2,c

)
(8.45)

+

bc/2c∑

x=1

(
c

x

)(
F0,x + β

δx(1− δ)c−x
π − 4δ′

+ h−1(s)β2F2,x

)
(8.46)

+
c−1∑

x=bc/2c+1

(
c

x

)(
F0,x + β

(1− δ)xδc−x
π − 4δ′

+ h−1(s)β2F2,x

)
. (8.47)

Gathering all terms with F0,x and F2,x, and using the substitution x′ = c− x for the summation
over dc/2e − 1 terms, we get

c∑

x=0

(
c

x

)
Mx ≤

c∑

x=0

(
c

x

)
F0,x − β

2(1− δ)c
π − 4δ′

+ h−1(s)β2
c∑

x=0

(
c

x

)
F2,x (8.48)

+
β

π − 4δ′

δc +

bc/2c∑

x=1

(
c

x

)
δx(1− δ)c−x

 (8.49)

+
β

π − 4δ′

δc +

dc/2e−1∑

x′=1

(
c

x′

)
δx
′
(1− δ)c−x′

 . (8.50)

99

For the summation over F2,x, let us define a sequence of random variables {Ti}ci=1 according to
Ti = q with probability p and Ti = −1/q with probability 1− p. Similar to the inequalities from
(8.20), we get that Ep[Ti] = 0 and Ep[T 2

i] = 1. Also, since Ti and Tj are independent for i 6= j,
we have that Ep[TiTj] = 0 for i 6= j. Therefore we can write

Ep

(

c∑

i=1

Ti

)2

 =

c∑

i=1

Ep
[
T 2
i

]
+
∑

i 6=j
Ep [TiTj] = c. (8.51)

But writing out the definition of the expected value, we see that the left hand side is actually
the same as the summation over F2,x, so that we get

Ep

(

c∑

i=1

Ti

)2

 =

c∑

x=0

(
c

x

)
px(1− p)c−x

(
xq − c− x

q

)2

=
c∑

x=0

(
c

x

)
F2,x = c. (8.52)

Also we trivially have that

c∑

x=0

(
c

x

)
F0,x =

c∑

x=0

(
c

x

)
Ep
[
px(1− p)c−x

]
= Ep

[
c∑

x=0

(
c

x

)
px(1− p)c−x

]
= 1. (8.53)

For the summation over bc/2c terms we use the following upper bound, which then also holds
for the summation over dc/2e − 1 terms:

δc +

bc/2c∑

x=1

(
c

x

)
δx(1− δ)c−x ≤

c∑

x=1

(
c

x

)
δx(1− δ)c−x = 1− (1− δ)c ≤ δc. (8.54)

Note that this first inequality is quite sharp. In most cases δ � 1− δ, so that the summation is
dominated by the terms with low values of x. Adding the terms with bc/2c < x < c (i.e. terms
with high powers of δ) to the summation has an almost negligible effect on the value of the
summation.

Now applying the previous results to (8.50), and using (1− δ)c ≥ 1− δc, which holds for all c,
we get

c∑

x=0

(
c

x

)
Mx ≤ 1− β 2− 4cδ

π − 4δ′
+ h−1(s)β2c. (8.55)

We want to prove that, for some g > 0,

c∑

x=0

(
c

x

)
Mx ≤ 1− β 2− 4cδ

π − 4δ′
+ h−1(s)β2c ≤ 1− gβ ≤ e−gβ. (8.56)

Filling in β = s
√
δ/c and δ = 1/(dδc) and writing out the second inequality, this leads to the

requirement that

2− 4
dδ

π
− h−1(s)s√

dδc
≥ g. (8.57)

This is exactly inequality (C1’), which is assumed to hold. So combining the results from
Equations (8.56) and (8.50) gives us that

E~y,X,~p
[
e−βS

]
≤
(

c∑

x=0

(
c

x

)
Mx

)`
≤ e−gβ`. (8.58)

This completes the proof.

100

Proof of Theorem 8.4. We will prove that for a coalition of size c, with probability at least 1− ε2
the algorithm will accuse at least one of the colluders. Since a coalition of size c can simulate
a smaller coalition by disregarding some of its users, this then proves that for any coalition of
size at most c, the scheme will accuse at least one of the colluders with probability at least
1− ε2. Note that if no colluders are accused, then the score of each colluder is below Z. Hence
if the total coalition score S exceeds cZ, then at least one of the pirates is accused. So to prove
ε2-soundness, it suffices to prove that P[S < cZ] ≤ ε2.
We first use the Markov inequality and Lemma 8.7 with β = s

√
δ/c > 0 to get

P[σ(~y) ∩ C = ∅] ≤ P[S < cZ] = P
[
e−βS > e−βcZ

]
≤ eβcZE~y,X,~p

[
e−βS

]
≤ eβcZ−gβ`. (8.59)

Since we want to prove that P[S < cZ] ≤ e−ηk ≤ (ε1/n)η = ε2, the proof would be complete if
βcZ − gβ` ≤ −ηk. Filling in β = s

√
δ/c, ` = d`c

2k, Z = dzck, δ = 1/(dδc) and writing out both
sides, we get

gd` − dz ≥ η
√

dδ
s2c

. (8.60)

This is exactly inequality (C2), which was assumed to hold. This completes the proof.

Compared to [BT08], we see that instead of using (C1), we now need that inequality (C1’) holds.
Comparing these two inequalities, we see that a term 1

π has changed to a 2
π , and a term 2

dδπ

has changed to a 4
dδπ

. The most important change is the 1
π changing to a 2

π , since that term
is the most dominant factor (and the only positive term) on the left hand side of (C1’). By
increasing this by a factor 2, we get that g ≤ 2

π instead of g ≤ 1
π . Especially for large c, this will

play an important role, and it will basically be the reason why the required codelength can then
be reduced by a factor 4, compared to Blayer and Tassa’s analysis for the asymmetric scheme.

While the other change (the 2
dδπ

changing to 4
dδπ

) does not have a big impact on the optimal
choice of parameters for large c, this change does influence the required codelength for smaller c.
Because of this change, we now subtract more from the left hand side of (C1’), so that the value
of g is bounded sharper from above. This means that for finite values of c, we cannot reduce the
codelength of Blayer and Tassa by a factor 4, but only by a factor slightly less than 4.

Finally, after using (C1’) in the proof above, the analysis remained the same as in [BT08].
So under the same assumption (C2) as in [BT08], we could also complete the proof for the
symmetric Tardos scheme.

8.5 Optimization

Similar to the analysis done by Blayer and Tassa in [BT08, Section 2.4], we also investigate the
optimal choice of parameters such that all requirements are satisfied, and d` is minimized. As only
one of the inequalities has changed, and it changed only on two positions, the formulas for the
optimal values of dδ, dα, dz, d` in the following Theorem are almost the same as in [BT08, Section
2.4.5].

Theorem 8.8. Let η, c be given, and let r, s, g be fixed, satisfying r ∈ (12 ,∞), s ∈ (0,∞), g ∈
(0, 2π). Then the optimal choice of dδ, dα, dz, d`, minimizing d` and satisfying conditions

101

(S1),(S2),(C1’),(C2), is given by:

d̂δ =

(
1

4
π − 2g

(√
(h−1(s)s)2

c
+

16

π

(
2

π
− g
)

+
h−1(s)s√

c

))2

, (O1)

d̂α = max

√
d̂δ

h(r)
√
c
,
r

g
+

√√√√(r
g

)2

+
r

g
η

√
d̂δ
s2c

 , (O2)

d̂z =
gd̂2α + rη

√
d̂δ
s2c

gd̂α − r
, (O3)

d̂` =
η

√
d̂δ
s2c

+ d̂z

g
. (O4)

So to find the optimal septuple (r̂, ŝ, ĝ, d̂δ, d̂α, d̂z, d̂`) for given c, η, satisfying all requirements and
minimizing d̂`, one only has to find the triple (r, s, g) with r ∈ (12 ,∞), s ∈ (0,∞) and g ∈ (0, 2π)
that minimizes the right hand side of (O4).

Example An optimal solution to (S1),(S2),(C1’),(C2) for c ≥ 2 and η = 1, minimizing d`, is
given by

d` = 23.79, dz = 8.06, dδ = 28.31, dα = 4.58, r = 0.67, s = 1.07, g = 0.49. (8.61)

This means that with these constants, we can prove soundness and completeness for all c ≥ 2
and η ≤ 1, with a codelength of ` = 23.79c2 ln(n/ε1). Compared to the original Tardos scheme,
which had a codelength of ` = 100c2 dln(n/ε1)e, this gives an improvement of a factor more than
4. Furthermore we can prove that this scheme is ε1-sound and ε2-complete for any value of c ≥ 2
and η ≤ 1, while Tardos’ original proof only works for c ≥ 2 and η ≤ √c/4.

Example In practice, one usually has η � 1 instead of η = 1. For example, it could be that
ε2 = 1/2 is sufficient, while ε1 = 10−3 is desired and there are n = 106 users, so that η ≈ 0.033.
Then the optimizations give us d` ≈ 10.89 for c = 2. So with this larger value of ε2, a codelength
of ` = 10.89c2 ln(n/ε1) is sufficient to prove the soundness and completeness properties for any
c ≥ 2. This is then already a factor more than 9 improvement compared to the original Tardos
scheme.

If we let c increase in inequalities (O1),(O2),(O3),(O4), i.e. if we only want provable security for
c ≥ c0 for some c0 > 2, then one can easily see that the inequalities become weaker and an even
shorter codelength can be achieved. Figure 8.1 shows the optimal values of d` against different
values of c, for several values of η. One can see that for large c, a codelength of ` < 6c2 ln(n/ε1)
can be sufficient. In the next section, we will see that for large c, the optimal values of d` will
converge to π2

2 ≈ 4.93.

8.6 Asymptotics

We now look at the asymptotic behaviour of the scheme as c goes to infinity. When c goes
to infinity, the distributions of the scores of both guilty and innocent users converge to the
Normal distribution with certain parameters. In [SKC08, Section 6] Skoric et al. investigated this
Gaussian approximation, and concluded that with Tardos’ choice of g0, g1 and F , the required

102

5 10 50 100 500 1000
0

5

10

15

20

25

� c

�
d` {

Figure 8.1: Optimal values of d`, for several values of c between 2 and 1000. The different lines
correspond to the cases η = 1, 0.5, 0.2, 0.1, 0.01 respectively, where higher values of η correspond to higher
values of d̂`.

codelength is ` ≈ π2

2 c
2 ln(n/ε1). This means that for sufficiently large c we will certainly need

that d` ≥ π2

2 .

In Tardos’ original paper, Tardos proved that d` = 100 is sufficient for c ≥ 16. This shows
that either Tardos’ choice of parameters was not optimal, or that the proof method is not tight.
In [SKC08] the symmetric accusations were introduced, showing that even d` > π2 is sufficient
for proving soundness and completeness, for sufficiently large c. In [BT08] the analysis of the
scheme, which was already tightened in [SKC08], was further tightened, but no symmetric
accusations were used. Applying asymptotics to their scheme shows that using their analysis,
d` > 2π2 is sufficient for proving security.

Here we will show that by combining the symmetric accusations from Skoric et al. with the
tighter analysis from Blayer and Tassa, as we did above, we can prove security for d` >

π2

2 . This
means that the gap of a factor 2 between provability and reality, as in [SKC08], has now been
closed. This is also why we refer to our scheme as the optimal Tardos scheme, as for c→∞ our
scheme achieves the theoretical optimal codelength.

Theorem 8.9. For c � 1 the above construction gives an ε1-sound and ε2-complete scheme
with parameters

` ≈ π2

2
c2 dln(n/ε1)e Z ≈ πc dln(n/ε1)e (8.62)

Proof. In our scheme we will take optimal values of d`, dz, dδ, dα, r, s, g such that all requirements
are met and d` is minimized. Hence showing that some parameters d`, dz, dδ, dα, r, s, g exist,
which meet all requirements and have d` ↓ π2

2 as c→∞ is sufficient for proving the Theorem.

103

For the second requirement, note that we can write it as a quadratic inequality in dα, as

d2α + (−dz)dα + rd` ≤ 0 (8.63)

The constant in front of dα is positive, while the function has to be negative. So this requirement
is met if and only if dα lies between its two roots, which therefore must exist.

dα ∈ [dα,−, dα,+] =

[
dz
2
− 1

2

√
d2z − 4rd`,

dz
2

+
1

2

√
d2z − 4rd`

]
(8.64)

Hence taking dα = dz
2 always satisfies this equation. The only remaining requirement is then

that the quadratic equation in dα in fact has a real-valued solution. So we need that the term
inside the square root is non-negative, i.e.

d2z ≥ 4rd` (8.65)

For the first requirement we then see that with dδ = O(ln(c)) and r = 1
2 +O(1/ ln(c)), the right

hand side converges to 0 as c→∞. Since the left hand side, dα = dz
2 , is positive (our dz will

converge to π > 0), this requirement will certainly be satisfied for sufficiently large c.

For the third requirement, note that the terms 4
dδπ

and h−1(s)s√
dδc

both converge to 0 as c goes to

infinity. This means that for sufficiently large c, the inequality will converge to

2

π
≥ g (8.66)

For the fourth requirement, again note that the term on the right hand side disappears as c goes
to infinity. So this inequality converges to

gd` − dz ≥ 0 (8.67)

Taking g ≈ 2/π and solving these equations gives us

dz ≥ 2rπ (8.68)

d` ≥ rπ2 (8.69)

With r = 1
2 +O(1/ ln(c))→ 1

2 as c→∞, we thus get

dz > π (8.70)

d` >
π2

2
(8.71)

By taking c sufficiently large, one can thus get d` arbitrarily close to π2

2 , as was to be shown.

Note that near the end of the above proof, we had the two equations

dz ≥ 2rπ (8.72)

d` ≥ rπ2 (8.73)

Here we used that r can be taken in the neighborhood of 1
2 to get the final result, d` >

π2

2 .
In [SKC08] however, no such variable r was used, as it was simply fixed at 1. Taking r = 1 in
these equations indeed gives

dz ≥ 2π (8.74)

d` ≥ π2 (8.75)

104

as was the result in [SKC08, Section 5.2]. This thus shows where the proof by Skoric et al. lost
the factor 2 in the asymptotic case; if they had taken r as a parameter in their analysis, they
would have gotten the same asymptotic results as we did above.

An immediate consequence of Theorem 8.9 is the following result, which shows that for large
c we will achieve codelengths of ` ≈ 4.93c2 ln(n/ε1), i.e. codelengths that are about 4.93% of
Tardos’ original codelengths.

Corollary 8.10. For c→∞ the above construction gives an ε1-sound and ε2-complete scheme
with parameters

`→ π2

2
c2 ln(n/ε1), Z → πc ln(n/ε1), δ → 0. (8.76)

This proves that our symmetric Tardos construction is asymptotically optimal, since for large c
we achieve the optimal codelength of ` = (π2 + o(1))c2 ln(n/ε1).

Remark In the proof of Theorem 8.9, we use that r can be taken in the neighborhood of 1
2 to

get the final result, d` = π2

2 +O(c−1/3+γ). In [SKC08] however, no such variable r was used, as
it was simply fixed at 1. Taking r = 1 in the proof of Theorem 8.9 gives us:

d̂δ = O(c1/3), d̂α = π +O(c−1/3), d̂z = 2π +O(c−1/3), d̂` = π2 +O(c−1/3). (8.77)

This thus gives a codelength of `→ π2c2 ln(n/ε1), which was also the result in [SKC08, Section
5.2]. This shows where Skoric et al. lost the factor 2 in the asymptotic case; if they had taken r
as a parameter in their analysis and had taken it close to 1

2 in the asymptotic case, then they
would have obtained the same asymptotic results as we did above.

8.7 Summary

In this chapter we improved upon the results from literature, by proving a codelength of
` = (π

2

2 + o(1))c2 ln(n/ε1) is sufficient for secureness for large c. This improves upon the main
result of Skoric et al. in [SKC08] by a factor 2, it improves upon a result of Skoric et al. by
proving the same codelength without needing the requirement that the distribution behaves
like a normal distribution, and it improves upon the asymptotic codelength from Nuida et al.
in [NFH+09] who prove ` ≈ 5.35c2 ln(n/ε1) for large c. We also showed how we improved upon
the results from Skoric et al., by indicating where we gained the factor 2.

Also for finite c, our codelengths are shorter than those of Blayer and Tassa, Skoric et al., and
in some cases also shorter than those of Nuida et al. The improvement over the original scheme
of Tardos is at least a factor 4 (for c = 2, η = 1) but can be as high as 20 (for large c).

105

106

Chapter 9

The dynamic Tardos scheme

9.1 Introduction

In this chapter we will discuss a dynamic version of the Tardos scheme. Whereas the normal
Tardos scheme discussed earlier belongs in the category of probabilistic static schemes, we will
show how to construct a probabilistic dynamic scheme based on the Tardos scheme, and why it
has advantages over the original Tardos scheme. Note that unlike with other dynamic schemes
discussed in Part I, here we do need to know (an upper bound on) c in advance. In the next
chapter we show how we can remove this dependence on c, giving a fully dynamic Tardos scheme.

Since our dynamic Tardos scheme makes use of analysis from the static Tardos scheme, we will
make use of the improved Tardos scheme from Chapter 8 as a building block. Not only does it
achieve low provably secure codelengths, but also does the proof of completeness there make use
of a variable β = O(

√
δ/c) instead of β = O(1/c), as was done in Tardos’ extended article to

prove completeness for c ≤ 15. The reason why this is useful will appear later.

Note that while Tassa obtained a probabilistic dynamic scheme by replacing symbols in a
deterministic dynamic scheme (the Fiat-Tassa scheme) with codewords from a probabilistic
static scheme (the Boneh-Shaw scheme), here instead we start with a probabilistic static scheme
(the Tardos scheme) and try to use the fact that we are working in a dynamic setting to get
better results.

9.2 Construction

Let us start with the construction, which can be summarized in a few lines. Instead of distributing
all symbols of the Tardos codewords simultaneously, we give users one symbol at a time. And
instead of looking at scores only at time `, we now calculate scores Sj(t) =

∑t
i=1 Sji at every

time step. And most importantly: at any time t, we disconnect all users with scores Sj(t) > Z.
Figure 9.1 graphically shows the difference between the construction of the old Tardos scheme,
and the construction of our scheme.

This scheme differs a lot from dynamic schemes like the Fiat-Tassa scheme and the Berkman
scheme, in the sense that the codewords are in fact independent of the pirate output. One would
expect that to achieve better results, one should use the pirate output to optimize the symbol
distribution, but here we show that using only the fact that we can disconnect users inbetween
already leads to big improvements.

Since the codewords can be determined in advance, the exact implementation of the scheme

107

`

Z

t

Sj

`

Z

t

Sj

Figure 9.1: The essential difference between the regular Tardos scheme and the dynamic Tardos scheme.
While in the static Tardos scheme users are disconnected once they intersect the blue line in the left figure
(i.e. if Sj(`) > Z), in the dynamic scheme users are now disconnected once they cross the blue line on the
right (i.e. if Sj(t) > Z for some 0 ≤ t ≤ `).

may differ, depending on the setting. Below we give an outline of the scheme where codewords
are generated in advance, and therefore could theoretically be stored at the client side.

Let n ≥ c ≥ 2 be positive integers, and let ε1, ε2 ∈ (0, 1) be the desired upper bounds for
the soundness and completeness error probabilities respectively. Let us write k = ln(n/ε1) so
that e−k = ε1/n. Let d`, dz, dδ be positive constants, with dδ > 1. Then the dynamic Tardos
fingerprinting scheme works as follows.

1. Initialization

(a) Take the codelength as ` = d`c
2k.

(b) Take the accusation offset parameter as Z = dzck.

(c) Take the cutoff parameter as δ = 1/(dδc), and compute δ′ = arcsin(
√
δ).

(d) For each fingerprint position 1 ≤ i ≤ `, select pi ∈ [δ, 1− δ] independently from the
distribution defined by the following CDF F (p) and PDF f(p):

F (p) =
2 arcsin(

√
p)− 2δ′

π − 4δ′
, f(p) =

1

(π − 4δ′)
√
p(1− p)

. (9.1)

The function f(p) is biased towards δ and 1− δ and symmetric around 1/2.

2. Codeword generation

(a) For each position 1 ≤ i ≤ ` and for each user 1 ≤ j ≤ n, select the ith entry of the
codeword of user j according to P[Xji = 1] = pi and P[Xji = 0] = 1− pi.

3. Distribution/Accusation

(a) For each position 1 ≤ i ≤ ` do the following:

i. Send to each connected user j the ith symbol Xji.

108

ii. After intercepting the pirate output yi, calculate the score Sji according to:

Sji =

+
√

(1− pi)/pi if Xji = 1, yi = 1,

−
√
pi/(1− pi) if Xji = 0, yi = 1,

−
√

(1− pi)/pi if Xji = 1, yi = 0,

+
√
pi/(1− pi) if Xji = 0, yi = 0.

(9.2)

(If no pirate output is detected, then the whole coalition has already been caught
and disconnected, and we simply terminate.)

iii. For each active user j, update the accusation sum Sj(i) according to Sj(i) =
Sj(i − 1) + Sji, i.e. Sj(i) =

∑i
k=1 Sjk. If Sj(i) > Z, then disconnect user j

immediately.

Compared to the static Tardos scheme, the main difference is that users are disconnected
inbetween as well, instead of only at the end. So why does this help? Well, for innocent users we
expect that things do not change a lot, compared to the static Tardos scheme. The probability
of accidentally disconnecting an innocent user increases, since an innocent user could have had
Sj(t) > Z at some time t < `, while Sj(`) < Z. But we will show that, compared to the static
Tardos scheme, this probability increases by at most a factor 2.

For guilty users however, we get an important advantage, based on the proof construction from
the original Tardos scheme. There, to prove that at least one guilty user gets accused, we proved
that S < cZ occurs only with low probability. In all other cases, by the pigeonhole principle, at
least one of the scores will be above Z, hence at least one pirate is caught. But now, since we
throw out users as soon as their scores exceed Z, we know that pirates will actually never get
a score higher than Z ′ = Z + maxp Sji(p) < Z + 1/

√
δ, which is relatively close to Z. So the

probability of catching all colluders is in fact related to P[S < cZ ′]: if not all pirates are caught,
then it follows that S < cZ ′. And since P[S < cZ ′] ≈ P[S < cZ] for Z ′ ≈ Z, we see that the
probability of not catching all colluders can now be bounded from above by roughly the same
ε2 as the one bounding the probability of not catching any colluders in the static scheme. So
by following the Tardos analysis, we can show that the dynamic Tardos scheme will catch all
colluders with high probability, and will not disconnect any innocent users with high probability.

For the construction, we again used auxiliary variables d`, dz and dδ, like we did in Chapter 8.
As it turns out, we can prove soundness and (special) completeness using the following four
assumptions. Note that the assumptions have barely changed compared to Chapter 8, and since
asymptotically s ≤ log(c1/3)� log(n/ε1) for c� n, the influence of the changes also disappears
as c→∞.

Theorem 9.1. Let the dynamic Tardos scheme be constructed as above. Let dα, r be positive
constants, with r > 1

2 , such that d`, dz, dδ, dα and r satisfy the following two requirements:

dα ≥
√
dδ

h(r)
√
c
, (S1)

dz
dα
− rd`
d2α
≥ 1 +

ln(2)

k
. (S2*)

Then the probability of accusing some innocent users is at most ε1, i.e. the scheme is ε1-sound.

Theorem 9.2. Let the dynamic Tardos scheme be constructed as above. Let s, g be positive

109

constants such that d`, dz, dδ, s and g satisfy the following two requirements:

2− 4
dδ

π
− h−1(s)s√

dδc
≥ g, (C1’)

gd` − dz ≥
(
η +

s+ ln(2)

k

)√
dδ
s2c

. (C2*)

Then the probability of not accusing all guilty users is at most ε2, i.e. the scheme is ε2-complete.

The completeness-property stated above is different from the completeness-property in the static
setting. Here we require that all pirates are caught, instead of at least one.

9.3 Soundness

First we prove an upper bound on the probability that an innocent user gets accused. This
bound relates the false positive probability in the dynamic Tardos scheme to the probability
that the score at time ` is above Z. We then use the proof of the static Tardos scheme to get an
absolute upper bound on the false positive error probability, and to prove Theorem 9.1.

Lemma 9.3. Let j ∈ U be an arbitrary user, and let C ⊆ U \ {j} be a coalition of any size not
containing j. Let ρ be some pirate strategy employed by this coalition. Then

P[j ∈ σ(ρ(X))] ≤ 2 · P[Sj(`) > Z] (9.3)

In other words, the probability of disconnecting an innocent user j in the dynamic scheme is
at most a factor 2 bigger than the probability of disconnecting an innocent user j in the static
Tardos scheme.

Proof. Let A be the event that an innocent user j gets accused in our dynamic Tardos scheme,
i.e. A is the event that Sj(t0) ≥ Z for some t0 ∈ {0, . . . , `}. Let B be the event that Sj(`) > Z.
Now trivially P[A|B] = 1. For P[B|A], note that the conditional gives us that there exists some
time t0 such that Sj(t0) = Z+α0 for some α0 ∈ [0,

√
1/δ]. Since the process {Sj(t)}∞t=t0 starting

at time t0 describes a random walk with zero drift, we have P[Sj(`) ≥ Sj(t0)] = 1/2 and thus
P[Sj(`) ≥ Z|Sj(t0) ≥ Z] ≥ 1/2.1 So P[B|A] ≥ 1/2. Finally we apply Bayes’ Theorem, which
says that for any two events A and B, P[A]P[B|A] = P[B]P[A|B]. Applying this to our A and B
gives us P[A] ≤ 2 · P[B], hence P[j ∈ σ(ρ(X))] ≤ 2 · P[Sj(`) > Z].

Lemma 9.4. Let j ∈ U be an arbitrary user, and let C ⊆ U \ {j} be a coalition of any size not
containing j. Let ρ be some pirate strategy employed by this coalition. Let (S1) and (S2*) be
satisfied. Then

P[Sj(`) > Z] ≤ ε1
2n
. (9.4)

Proof. First, we remark that the distribution of Sj(`) is the same as the distribution of Sj in
the static Tardos scheme, for the same parameters `, Z, δ. The distribution F is the same, and
the score function Sji is the same. So it is sufficient to prove that in the static Tardos scheme,
P[Sj > Z] ≤ ε1/2n. Now, as in the proof of Theorem 8.3, we use the Markov inequality with
α = 1/(dαc) to get

P[Sj > Z] = P[eαSj ≤ eαZ] ≤ e−αZE[eαSj] ≤ e−αZ+rα2`. (9.5)

Multiplying both sides of (S2*) by −c2k and taking the exponential on both sides gives
e−αZ+rα

2` ≤ ε1/2n, which proves the result.

1If [Sj(t0) > Sj(`) > Z], then {Sj(`) ≥ Z|Sj(t0) ≥ Z} is satisfied, but {Sj(`) ≥ Sj(t0)} does not hold. This
explains the use of a greater-equal sign instead of an equality sign, giving a probability slightly more than 1/2.

110

9.4 Special completeness

As was also done in the proof of Soundness, we prove (special) completeness by relating
the false negative probability to the false negative probability in the static Tardos scheme.
Then we simply use the results from the static Tardos scheme to complete the proof. Below
we write R(t) =

∑
j∈C

∑t
i=d(j)+1 Sji, where d(j) is the time when user j is disconnected

and no longer receives any codewords, and d(j) = ∞ if j is never disconnected. We write
S(t) =

∑t
i=1

∑
j∈C:d(j)>i Sj(t), and S̃(t) = S(t) + R(t) for times t where at least one pirate is

still active, and S̃(t) =∞ otherwise.

Lemma 9.5. Let C be a coalition of size at most c, and let ρ be any pirate strategy employed
by this coalition. Then

P[C 6⊆ σ(ρ(X))] ≤ 2 · P[S̃(`) < cZ ′]. (9.6)

Proof. If C 6⊆ σ(ρ(X)), then at time ` at least one pirate is still active, and S(`) is trivially at
most cZ ′. So then S̃(`) = S(`) +R(`), and P[S̃(`) < cZ ′] ≥ Pd[S(`) < cZ ′]Pd[R(`) < 0] = 1

2 . So

if C 6⊆ σ(ρ(X)) then with probability at least 1/2 we have S̃(`) < cZ ′, giving the result.

Lemma 9.6. Let C be a coalition of size at most c, and let ρ be any pirate strategy employed
by this coalition. Let (C1’) and (C2*) be satisfied. Then

P[S̃(`) < cZ ′] ≤ ε2
2
. (9.7)

Proof. First, note that in the dynamic Tardos scheme, the only extra information pirates receive
compared to the static Tardos scheme is the fact whether some of them are disonnected from
them. This information is certainly covered by the information contained in the values of pi (if
pirates know pi, then they can calculate their scores Sj themselves and calculate whether they
are disconnected or not). Also note that S̃(`) behaves the same as S in the static Tardos scheme,
where the total coalition score is calculated for all pirates and all positions, regardless of whether
they contributed at that position or not. So if we can prove that even in the static Tardos scheme,
and even if coalitions get information about the values of pi, the probability of keeping the
coalition score S below cZ ′ is bounded by ε2/2, then it follows that also P[S̃(`) < cZ ′] ≤ ε2/2.

For the static Tardos scheme, note that the proof method for the completeness property did not
use that pi is secret. The only thing that was used in that proof is that the Marking Assumption
applies, which does apply here. So here we can also use the proof method of the static Tardos
scheme. So following the first few steps, using the upper bound on the expectation value, and
using Z ′ − Z < 1/

√
δ we get

P[S < cZ ′] = P[e−βS > e−βcZ
′
] ≤ eβcZ′−gβ` < eβcZ+s−gβ`. (9.8)

Multiplying both sides of (C2*) by −c2kβ, taking the exponential of both sides, and multiplying
both sides by es gives eβcZ+s−gβ` ≤ e−kη−ln(2) = ε2/2, which was to be proven.

9.5 Optimization

Again, we use the analysis of Blayer and Tassa in [BT08, Section 2.4] and slightly modify it to
obtain a new set of optimal parameters for our scheme. The formulas for the optimal values of
dδ, dα, dz, d` in the following Theorem are again almost the same as in Chapter 8.

111

Theorem 9.7. Let η, c, k be given, and let r, s, g be fixed, satisfying r ∈ (12 ,∞), s ∈ (0,∞), g ∈
(0, 2π). Let η′ = η+(s+ln(2))/k and let γ = 1+ln(2)/k. Then the optimal choice of dδ, dα, dz, d`,
minimizing d` and satisfying conditions (S1),(S2),(C1’),(C2), is given by:

d̂δ =

(
1

4
π − 2g

(√
(h−1(s)s)2

c
+

16

π

(
2

π
− g
)

+
h−1(s)s√

c

))2

, (O1)

d̂α = max

√
d̂δ

h(r)
√
c
,
r

g
+

√√√√(r
g

)2

+
r

g

η′

γ

√
d̂δ
s2c

 , (O2*)

d̂z =
gd̂2αγ + rη′

√
d̂δ
s2c

gd̂α − r
, (O3*)

d̂` =
η′
√

d̂δ
s2c

+ d̂z

g
. (O4*)

So to find the optimal septuple (r̂, ŝ, ĝ, d̂δ, d̂α, d̂z, d̂`) for given c, η, k, satisfying all requirements
and minimizing d̂`, one again only has to look for the triple (r, s, g) with r ∈ (12 ,∞), s ∈ (0,∞)
and g ∈ (0, 2π) that minimizes the right hand side of (O4*).

Example An optimal solution to (S1),(S2*),(C1’),(C2*) for c ≥ 2 and η ≤ 1 and k ≥ 5 ln(10) ≈
11.51, minimizing d`, is given by

d` = 26.16, dz = 8.64, dδ = 26.42, dα = 4.61, r = 0.66, s = 1.03, g = 0.49. (9.9)

This means that with these constants, we can prove soundness and completeness for all c ≥ 2,
η ≤ 1 and k ≥ 11.51, with a codelength of ` = 26.16c2 ln(n/ε1).

9.6 Discussion

If we compare our construction with the static Tardos scheme, then we see the biggest advantage
is that we now have certainty about catching all pirates, rather than catching at least one pirate.
So to catch all pirates, instead of repeating the Tardos scheme c times (giving a total codelength
of O(c3 log(n/ε1))), we catch the whole coalition using at most O(c2 log(n/ε1)) time.

Since this scheme is a dynamic scheme, we can also compare it to some of the dynamic traitor
tracing schemes we saw earlier. If we compare our scheme to deterministic dynamic schemes,
then we see that the time needed is a factor c more. However, we use a much smaller alphabet
(q = 2). On the other hand, Tassa also used a binary alphabet in his probabilistic dynamic
traitor tracing scheme, but compared to that scheme the time/codelength needed for our scheme
is a factor c2 log(n) less. Furthermore, this construction has some nice properties which no other
dynamic traitor tracing scheme has: Some advantages of our construction are as follows.

1. Codewords of users are independent, so it is impossible to frame a specific user.

2. Codeword positions are independent of earlier positions, so for generation of the codewords
we do not need the feedback from the pirates.

Especially the second property offers new possibilities. With this scheme, it is possible to generate
the whole code and the codewords in advance, and store these codewords at the clientside. The

112

0 200 400 600 800 1000

-100

0

100

200

300

� t

�
S

jHtL

Figure 9.2: An example of the dynamic Tardos scheme, with 100 users, 3 of which are pirates. In this
case Z ≈ 270, and after t ≈ 1140 time all three pirates have been caught. In this case pirates share the
risk, by contributing equally to the pirate broadcast.

0 200 400 600 800 1000

-100

0

100

200

300

� t

�
S

jHtL

Figure 9.3: Another example of the dynamic Tardos scheme, with again 100 users, 3 of which are
pirates, and the same scheme parameters. In this case however, the pirates used a different strategy.
However, this hardly shows in the result, as again after t < 1200 time all pirates are caught, and no
innocent users are disconnected.

113

0 200 400 600 800 1000

-100

0

100

200

300

� t

�
S

jHtL

Figure 9.4: Again we have n = 100 users, of which c = 3 are pirates. In this case the pirates chose the
scapegoat strategy, i.e. sacrificing one pirate, one at a time. This is where the advantage of the dynamic
Tardos scheme comes in: In the regular Tardos scheme, the steep line of the first sacrificed pirate would
then simply continue all the way until t = `, giving this user a gigantic score and leaving the other two
pirates free of suspicion. However now the first pirate is soon disconnected, after which the other two
pirates have to step in. They continue sacrificing pirates one at a time, and soon the second pirate is
disconnected. The third pirate finally has to output his data, and he is also disconnected. And this all
happens before time t = 1200, i.e. compared to the previous two examples the pirates did not gain anything,
as again all pirates are disconnected in 1200 symbols.

114

scheme only needs to be able to disconnect a user from the system during the process. This is
also the only reason why this scheme does not work in a static environment; then the pirates
could sacrifice one user for all positions, while here after some steps you want to disconnect that
user and force the others to contribute and get their scores up. So the fact that this scheme is
in a sense only semi-dynamic could give practical advantages over a full dynamic scheme, where
codewords depend on the pirate output.

Finally, one does not need to store the codewords or the values of pi, but only the current
accusation scores for each user in this scheme. So the total data storage required for this scheme
is constant for each user, even when `, c→∞. But as mentioned above, for practical reasons one
may want to store the complete codewords, at the client side or at the side of the distributor.

9.7 Variant

For the above scheme to work, we need to be able to disconnect users after every codeword
position. However, we can modify the scheme to also work in a setting where this is not possible,
but where we can only disconnect users after each block of b symbols. One solution would be
to only use one of the b symbols, so that we need b times as many symbols to disconnect all
traitors. But we can do better than that. We can simply use the proof method described above,
and see where we need to make changes. As it turns out, we can solve this problem by simply
defining Ẑ ′ = Z + bmaxp Sji(p) < Z + b/

√
δ as our new upper bound for the scores of users.

Then we can follow the whole process described above again, and we finally end up with the
following Theorems.

Theorem 9.8. Let the dynamic Tardos scheme be constructed as above, and let b be the block size
such that after every b symbols we can choose to disconnect a user or not. Let dα, r be positive
constants, with r > 1

2 , such that d`, dz, dδ, dα and r satisfy the following two requirements:

dα ≥
√
dδ

h(r)
√
c
, (S1)

dz
dα
− rd`
d2α
≥ 1 +

ln(2)

k
. (S2*)

Then the probability of accusing some guilty users is at most ε1, i.e. the scheme is ε1-sound.

Theorem 9.9. Let the dynamic Tardos scheme be constructed as above, and let b be the block
size such that after every b symbols we can choose to disconnect a user or not. Let s, g be positive
constants such that d`, dz, dδ, s and g satisfy the following two requirements:

2− 4
dδ

π
− h−1(s)s√

dδc
≥ g, (C1’)

gd` − dz ≥
(
η +

bs+ ln(2)

k

)√
dδ
s2c

. (C2#)

Then the probability of not accusing all guilty users is at most ε2, i.e. the scheme is ε2-complete.

To find an optimal solution, one can again apply use formulas similar to those in Theorem 9.7,
but with η′ = η + (s+ ln(2))/k replaced by η̂′ = η + (bs+ ln(2))/k.

Example Let b = 10. An optimal solution to (S1),(S2*),(C1’),(C2#) for c ≥ 2 and η ≤ 1 and
k ≥ 5 ln(10) ≈ 11.51, minimizing d`, is given by

d` = 33.57, dz = 9.46, dδ = 18.70, dα = 4.92, r = 0.62, s = 0.82, g = 0.48. (9.10)

115

This means that with these constants, we can prove soundness and completeness for all c ≥ 2,
η ≤ 1, k ≥ 11.51, and b ≤ 10 with a codelength of ` = 33.57c2 ln(n/ε1).

Note that for very large b, we basically end up in a static scenario where we can only disconnect
users after all of the symbols have been distributed.

9.8 Summary

In this chapter we gave a new construction of a probabilistic dynamic traitor tracing scheme based
on the Tardos scheme, which uses a codelength/time of at most O(c2 ln(n/ε1)). Furthermore, as
described in the Discussion, this scheme has several other advantages, making it a very suitable
choice for use in practice. The proofs are heavily based on the proofs of the Tardos scheme, so
most of the work was already done. Finally we also discussed a variant of the scheme, which
may be useful in case disconnecting users after every symbol is impossible or ¨expensivë. Even
if we can only disconnect users after every block of b symbols, we still get very good and short
codelengths.

116

Chapter 10

The universal Tardos scheme

10.1 Introduction

In the second part of the Tardos Quadrilogy, we saw that we can construct an efficient probabilistic
dynamic traitor tracing scheme based on the Tardos scheme. However, for this scheme we needed
an input c in advance, as the Tardos scheme depends on c. So one natural question is: Can
we construct a dynamic Tardos scheme that works even when c is not known in advance? The
answer is yes, as we will see in this chapter. The idea is to first move the dependence on c from
the traitor tracing code to the score function, and then run several instances of the dynamic
Tardos scheme (for different values of c) simultaneously, all using the same symbols. We will show
that then we can catch any coalition of any a priori unknown size c in at most O(c2 log(n/ε1))
time. This is a huge improvement over Tassa’s scheme [Tas05] described in Chapter 7.

`

Z

t

Sj

`c`2`1

Z1

Z2

Zc

.

.

.

t

Sj

. ..

Figure 10.1: The main idea of the universal Tardos scheme is to run multiple instances of the dynamic
Tardos scheme simultaneously, so that one gets multiple blue lines which will get a user disconnected. On
the left we see the schematic representation of the dynamic Tardos scheme for a fixed c, while on the right
we see the schematic construction of the universal Tardos scheme, for collusions of size at most c. Each
block of width `i and height Zi corresponds to one instance of the dynamic Tardos scheme, with c = i.

Let us briefly go back to the original symmetric Tardos scheme. Looking closely, we see that there
is a chain of dependencies which make the codewords dependent on c: We take Xji ∼ Ber(pi),
we take pi ∼ F , the function F depends on δ′, δ′ depends on δ, and we take δ = 1/(300c). So

117

the values of Xji actually depend on the value of c. Furthermore for the proof of soundness we
use that δ is large enough, so that αSji ≤ α

√
1/δ can be bounded from above, while e.g. for the

proof of completeness we use several times that δ is sufficiently small, so we cannot simply take
δ fixed regardless of c.

For the solution to our problems, we turn our attention to the probability density function used
for the values pi. For fixed c, let us denote this function by fc(p). Let us recall the definition of
fc(p):

fc(p) =
1

(π − 4δ′c)
√
p(1− p)

. (10.1)

The important observation now is that this function fc(p) is actually almost the same for all
values of c; for different c we merely use a different scaling of this function to make sure the
integral sums up to 1. In particular, writing f∞(p) = limc→∞ fc(p) = 1

π
√
p(1−p)

, which is a

function that does not depend on c, we get the relation:

fc(p) =
π

π − 4δ′c
f∞(p). (10.2)

The function fc(p) and the term π − 4δ′c are chosen such that integrating fc from δc to 1− δc
gives exactly 1, i.e. such that this is a probability density function. Using the above relation,
this means that integrating f∞ from δc to 1− δc gives

∫ 1−δc

δc

f∞(p) =
π − 4δ′c
π

= 1− 4δ′c
π
. (10.3)

Since δ′c = arcsin(
√
δc) = arcsin(

√
1/(300c)) is very small, integrating f∞(p) from δc to 1− δc

gives roughly 1. So the area below the curve f∞(p) between the offsets δc and 1− δc is close to 1.

Now the solution to a c-independent traitor tracing scheme is as follows. We simply use the
function f∞ for our codeword generation. Then, during the accusation phase, we calculate scores
for each user for each value of c. For any c, we need that the values of pi were taken according
to fc. Therefore for any value of c we simply disregard all positions for which pi was not in the
range [δc, 1− δc]. Above we calculated the cost of this, and saw that we are actually throwing
away only a small percentage of the data. For the positions that are counted, the values of pi
are actually according to the distribution fc, since fc is just a rescaled version of f∞ between
the offsets δc and 1− δc. The mechanics for the dynamic Tardos scheme thus remain the same,
and the proofs will go analogously.

10.2 Construction

Let us now give the construction in full, with a full explanation of what is going on afterwards.
Let n ≥ 2 be a positive integer, and let ε1, ε2 ∈ (0, 1) be the desired upper bounds for the
soundness and completeness error probabilities respectively. Let ~v(i) be the characteristic vector
such that vc = 1 if pi ∈ [δc, 1 − δc] and vc = 0 otherwise. Then the universal Tardos traitor
tracing scheme works as follows.

1. Initialization

(a) Take some vector ~κ such that
∑∞

c=1 κc ≤ 1.

(b) Take the vector ~k according to kc = ln(n/κcε1).

118

(c) Take parameters ~λ, ~ζ, ~d such that for some parameters ~α, ~ρ,~γ, ~σ, for each c the following
requirements are satisfied:

αc ≥
√
dc

h(ρc)
√
c
, (US1)

ζc
αc
− ρcλc

α2
c

≥ 1 +
ln(2)

kc
, (US2)

2− 4
dc

π
− h−1(σc)σc√

dcc
≥ γc, (UC1)

γcλc − ζc ≥
(
η +

σc + ln(2)

kc

)√
dc
σ2c c

. (UC2)

(d) Take the codelength vector ~̀ according to `c = λcc
2kc.

(e) Take the accusation offset vector ~Z according to Zc = ζcckc.

(f) Take the cutoff vector ~δ according to δc = 1/(dcc).

(g) Set the initial score vector ~Sj for each user j according to (Sj)c = 0 for all c.

(h) Set the initial time vector ~t according to tc = 0.

2. Generation/Distribution/Accusation
For each time i ≥ 1 do the following.

(a) Select pi ∈ [0, 1] from the distribution defined by the functions F∞(p) and f∞(p):

F∞(p) =
2 arcsin(

√
p)

π
, f∞(p) =

1

π
√
p(1− p)

. (10.4)

(b) For each user j, select Xji according to P[Xji = 1] = 1− P[Xji = 0] = pi.

(c) Send to each connected user j the ith symbol Xji.

(d) Intercept the pirate output yi, or terminate if there is none.

(e) Calculate the scores for position i, according to:

Sji =

+
√

(1− pi)/pi if Xji = 1, yi = 1,

−
√
pi/(1− pi) if Xji = 0, yi = 1,

−
√

(1− pi)/pi if Xji = 1, yi = 0,

+
√
pi/(1− pi) if Xji = 0, yi = 0.

(10.5)

(f) Update the scores of each user according to ~Sj := ~Sj + Sji~vi.

(g) Update the times according to ~t := ~t+ ~vi.

(h) If (Sj)c > Zc and tc ≤ `c for some index c, then disconnect user j.

Let us explain a bit more what we are actually doing here. First, we take some vector ~κ which
must sum to at most one. The purpose of these constants is the following. For each c, we will
bound the false positive probability by what is inside the logarithm of kc, i.e. κc · ε1/n. However,
since we run all these schemes simultaneously, the total false positive probability for a single
user is bounded from above by summing over all false positive probabilities for each c. So the
probability that an innocent user is ever accused is bounded by

∑∞
c=1 κcε1/n = ε1/n

∑∞
c=1 κc.

Since we want this to be bounded from above by ε1/n, we get the requirement that
∑∞

c=1 κc ≤ 1.
One way to realize this is to take e.g. κc = (1/2)c, so that κc decreases exponentially in c. However,

119

then we get kc = ln(n/κcε1) = ln(2cn/ε1) = O(c ln(n/ε1)), so that `c = O(c3 ln(n/ε1)) which is
not what we want. Fortunately we can also take e.g. κc = 6/π2c2 (using that

∑∞
i=1 1/c2 = π2/6),

so that kc = O(ln(n/ε1)) and `c = O(c2 ln(n/ε1)). If c is expected to be small, then to make
`1, `2, `3, . . . as small as possible, it is better to take κc = O(1/cN) for some large N , so that
most of the weight is at the beginning. However, if c may be large, then κc = O(1/c1+ε) may be
a better choice, so that for large c, κc is not that small. So there is an obvious tradeoff here,
and the optimal solution depends on the scenario.

Now let us continue with the construction. The constants kc play the role of k = ln(n/ε1) in the
previous chapters, except now there is this extra term inside the logarithm, making the values
of k different for each c. The parameters ~λ, ~ζ, ~d, ~α, ~ρ,~γ, ~σ play the roles of d`, dz, dδ, dα, r, g, s
respectively, except that now these are also vectors. The renaming is done for convenience, to
avoid double indices. Note that (US1), (US2), (UC1), (UC2) are the same as (S1), (S2*), (C1’),
(C2*) from the previous chapter, only with variables renamed. Next we also take `c, Zc, δc for
each c differently, using these variables λc, . . . , σc. Finally we initialize all scores for all users at
0, and the counter of used positions for each c is set at 0. These counters tc will count how many
of the pis up to now were between δc and 1− δc, i.e. how many positions were not discarded for
this value of c.

Then comes the actual distribution/accusation phase. For each time, we first generate a value pi
according to F∞ (which does not depend on c). This pi is then used to generate symbols Xji, as
is usual in the Tardos scheme. The symbols are distributed, and if a pirate transmitter is still
active, we assume we will intercept some pirate output yi

1. Then, for each user j we calculate
the value Sji (which in fact also does not depend on c), but for updating the scores we now
only increase those scores (Sj)c for which pi ∈ [δc, 1− δc]. This is done simply by adding Sji · ~vi,
since ~vi has the nice property of indicating for which values of c the scores should be updated.
Similarly, the counters are updated simply by adding ~vi to ~t (adding 1 only for those c for which
these symbols were used), and for each user j and coalition size c we check whether the cth score
of user j exceeded the cth threshold Zc. Note that in most cases, (Sj)c ≈ (Sj)c+1 while Zc and
Zc+1 may be quite far apart.

After this, the process repeats for the next value of i, generating new symbols, distributing them,
updating scores and disconnecting users. The process terminates if, as mentioned above, no
pirate output is received anymore, but again, depending on the application, one may want to
have different rules for termination (e.g. after a fixed number of positions the process simply has
to stop).

10.3 Results

Let us now formally prove results above this scheme. Using the above construction, we get the
following results, which can be easily proved using results from previous chapters.

Theorem 10.1. Let the universal Tardos scheme be constructed as above. Then the probability
of ever accusing an innocent user is at most ε1/n, hence the probability of never disconnecting
any innocent users is at least 1− ε1.

Proof. We chose the parameters λc, . . . , σc such that they satisfy the requirements from the
dynamic Tardos scheme with parameter c and error probability ε1,c = κcε1. Hence for each c we

1If no output is received, then we are happy. Either we can wait and repeat the same symbols until output is
received (which only means the pirates have lost part of the content for their distribution), or we can at some
point terminate, concluding that we must have caught all pirates. Of course this also depends on the scenario, e.g.
if before the pirate output stopped no user was disconnected, then a pirate is still active and one may want to
continue to wait.

120

know that the probability of having (Sj)c > Zc before the time i when tc = `c is at most κcε1/n.
So the probability that the user is ever accused is bounded from above by:

P[j ∈ σ] ≤
∞∑

c=1

κc
ε1
n
≤ ε1
n
. (10.6)

The proof can again be completed by noting that (1− ε1/n)n ≥ 1− ε1.

Theorem 10.2. Let the universal Tardos scheme be constructed as above. Let C be a coalition
of some a priori unknown size c. Then the probability that by the time i when tc = `c some
members of the coalition are still active is bounded from above by ε2.

Proof. We chose the parameters λc, . . . , σc such that they satisfy the requirements from the
dynamic Tardos scheme with parameter c, so the result follows from the proofs given in the
previous Chapter.

Theorem 10.3. Let the universal Tardos scheme be constructed as above. Let Tc be the time
at which we see the `cth value of pi between [δc, 1 − δc]. Then Tc − `c is distributed according
to a negative binomial distribution, with parameters r = `c and p = 4

π δ
′
c. Hence Tc has mean

µ = `c/(1−p) and variance σ2 = `cp/(1−p)2, and P[Tc ≥ µ+a] for a > 0 decreases exponentially
in a.

Proof. The fact that Tc − `c follows a negative binomial distribution can be easily verified by
checking the definition of the negative binomial distribution, while we are waiting for r = `c
successes, with each success happening with probability p = 1 − P(pi ∈ [δc, 1 − δc]) = 4

π δ
′
c.

Finally the mean and variance of the negative binomial, as well as the size of the tails, are well
known.

To summarize the results, we see that the number of symbols Tc needed to reach `c useful
symbols is a random variable with mean `c/(1− 4

π δ
′
c) and exponentially small tails, and one we

reach this time Tc, we know that with probability 1−ε2 we will have caught all guilty users of the
coalition, if the coalition had size at most c. Furthermore the probability of ever disconnecting
an innocent user is at most ε1.

Example Let us use the sequence κc = 6/(π2c2), such that
∑∞

c=1 κc = 1. Then for fixed c we
get `c = λcc

2 ln(nc2π2/6ε1), so for constant λc we get `c = O(c2 ln(n/ε1)). Let n = 1000 and
ε1 = ε2 = 0.01. Then we can take the parameters as in Tables 10.1 and 10.2, giving codelengths
`c = O(c2 ln(n/ε1)).

Example Again let us use the sequence κc = 6/(π2c2). Let n = 100 and c = 3, and let
ε1 = 0.01 and ε2 = 0.5. Figures 10.2, 10.3, 10.4, 10.5 graphically show a simulation of this
situation, where the pirates used a pirate-symmetric strategy. The graphs show the scores of
users set against the time, with different lines corresponding to different users. However, since
we have to keep multiple scores for each user, every user now also has multiple lines. But in
most cases these lines overlap, while Figure 10.2 shows one of the rare exceptions where the
different scores for each user are actually different.

121

c kc `c Zc δc

2 13.3969 1385 229.433 0.0187624
3 14.2079 2772 329.503 0.0122054
4 14.7832 4567 427.245 0.0089459
5 15.2295 6753 523.522 0.0070081
6 15.5941 9319 618.780 0.0057293
7 15.9024 12258 713.285 0.0048252
8 16.1695 15562 807.211 0.0041540
9 16.4051 19227 900.678 0.0036371
10 16.6158 23249 993.774 0.0032275

15 17.4267 48610 1455.52 0.0020273
20 18.0021 82535 1913.66 0.0014505
25 18.4484 124860 2369.97 0.0011159
30 18.8130 175479 2825.32 0.0008991
35 19.1213 234317 3280.18 0.0007482
40 19.3884 301320 3734.83 0.0006376
45 19.6240 376445 4189.45 0.0005534
50 19.8347 459660 4644.17 0.0004873

Table 10.1: The parameters for the universal Tardos scheme, for n = 1000 and ε1 = ε2 = 0.01, using the
sequence (κc) = (6/π2c2). Since kc = ln(n/κcε1) with κc decreasing in c, kc is increasing in c. To catch
a coalition of size 50, we roughly need at most 460000 usable symbols, which is less than 58 kB. Note that
it is also clear from the table that Zc grows linearly in c (Zc = O(ckc)), while `c grows quadratically in c
(`c = O(c2kc)).

c λc ζc dc αc ρc σc γc

2 25.8332 8.56291 26.6491 4.60329 0.663136 1.03032 0.486256
3 21.6741 7.73053 27.3104 4.13024 0.647677 1.10635 0.498434
4 19.3054 7.22518 27.9456 3.84325 0.637387 1.16136 0.506936
5 17.7352 6.87511 28.5383 3.64457 0.629786 1.20459 0.513419
6 16.5994 6.61338 29.0904 3.49612 0.623819 1.24024 0.518626
7 15.7300 6.40768 29.6066 3.37950 0.618941 1.27062 0.522958
8 15.0374 6.24022 30.0917 3.28459 0.614838 1.29708 0.526654
9 14.4691 6.10027 30.5498 3.20531 0.611313 1.32055 0.529868
10 13.9920 5.98090 30.9841 3.13770 0.608233 1.34162 0.532703

15 12.3972 5.56816 32.8850 2.90412 0.597011 1.42349 0.543242
20 11.4618 5.31510 34.4700 2.76105 0.589638 1.48224 0.550334
25 10.8289 5.13861 35.8468 2.66134 0.584245 1.52816 0.555600
30 10.3639 5.00597 37.0735 2.58644 0.580043 1.56590 0.559745
35 10.0034 4.90131 38.1862 2.52736 0.576629 1.59796 0.563136
40 9.71326 4.81581 39.2086 2.47912 0.573773 1.62584 0.565989
45 9.47304 4.74415 40.1575 2.43870 0.571330 1.65050 0.568440
50 9.26981 4.68288 41.0450 2.40414 0.569204 1.67263 0.570580

Table 10.2: The parameters ~λ . . . ~σ for the universal Tardos scheme with n = 1000 and ε1 = ε2 = 0.01,
satisfying the four conditions and minimizing λc for every c. Note again that as in the previous chapter,
λc converges to π2/2 ≈ 4.93, ζc converges to π ≈ 3.14, αc converges to π/2 ≈ 1.57, ρc converges to 0.5
and γc converges to 2/π ≈ 0.64, while dc and σc will (slowly) diverge.

122

0 200 400 600 800 1000
-50

-40

-30

-20

-10

0

10

20

� t

�
S

j,c
HtL

Figure 10.2: An example of the multiple scores for a single user. The dashed lines correspond to the
times when t1 = `1, t2 = `2 and t3 = `3, while the thresholds Z1, Z2, Z3, Z4 are not in range and therefore
are not shown here. In this case, around time t ≈ 185, we had a rare event; the value pi was either in the
interval [δ4, δ3] or in the interval [1− δ3, 1− δ4], and although an extreme percentage of users received
the same symbol here, the user received the other, unlikely symbol. Since the pirates outputted the most
common symbol, the score of the user dropped drastically for c ≥ 4, while for c = 2, 3 this position was
disregarded (due to the fact that pi /∈ [δ3, 1−δ3]). Note that this is a very rare event; we had to run several
simulations on a hundred users to get one of these rare events to occur. In most cases, the graphs for a
fixed user, for different values of c, are almost indistinguishable, since on positions which are disregarded
for some c, all users usually receive the same symbol.

10.4 Discussion

So the scheme we saw above is able to catch coalitions of any a priori unknown size c in
O(c2 ln(n/ε1)) time, with arbitrary high probability. This is already a huge improvement over
earlier results from Tassa [Tas05]. However, this is not all, as this scheme has many more
advantages.

First of all, as we also saw with the dynamic Tardos scheme, the code is independent of the
pirate output. The only thing we use the pirate output for is to disconnect users inbetween.
This means that we could theoretically generate the whole vector pi and the whole code matrix
X in advance, instead of inbetween rounds. This means we will never have to worry about the
time between receiving pirate output and sending new symbols, as this can be done instantly.
Also, this means that one could try to somehow store the part of the matrix belonging to user j
(i.e. ~xj) at the client side of user j, instead of distributing symbols one at a time. If this can
somehow be made secure, so that users cannot tamper with their codewords, then this would
save the distributor of having to send symbols to each user over and over. Instead, he could
then send the whole codeword at the start, and then start the process of distributing content
and disconnecting users. This could be a real advantage of this scheme, as private messages to
each user are generally costly.

123

0 200 400 600 800 1000
-50

0

50

100

150

200

250

300

� t

�
S

j,c
HtL

Figure 10.3: The scores of a single pirate over time. The blue straight lines correspond to the thresholds
Zc, while the colored lines correspond to the scores for different values of c. The score for some c = i
only exists on the interval [0, `i), e.g. the green line for c = 2 starts at t = 0 (but overlaps with the blue
line on the interval [0, `1)) and stops at the second dashed line, around t ≈ 370. At t ≈ 1160 this pirate
hits the ceiling and is disconnected from the system.

0 200 400 600 800 1000
-50

0

50

100

150

200

250

300

� t

�
S

j,c
HtL

Figure 10.4: The scores of all three pirates in the system. Note that in this case, the scheme failed to
find and disconnect all pirates before time `3, as two pirates are still active then (although their scores are
close to the threshold Z3). This means that this simulation of the scheme falls in the ε2-tail of exceptions,
as the probability of not catching all pirates by time `3 is at most ε2 (in this case ε2 ≈ 1/2). Also note
that as the pirate that is caught first does not receive any symbols anymore, his score remains constant
after that.

124

0 200 400 600 800 1000
0

50

100

150

200

250

300

� t

�
S

j,c
HtL

Figure 10.5: The average pirate score (i.e. A(t) = 1
|C|
∑
j∈C Sj(t)) over time. Regardless of the strategy

used, this line will be close to linear in t, which intuitively shows that the scheme will eventually catch all
pirates, as the thresholds only grow as O(

√
t). So even if the scheme fails to catch all c pirates before

time `c, with even higher probability all c pirates will be caught before time `c+1.

0 200 400 600 800 1000
-100

0

100

200

300

� t

�
S

j,c
HtL

Figure 10.6: All scores of all 100 users in the system. If you look very closely, you will see a bit of
purple around (200,−40) and (700,−50), which corresponds to the one user whose different scores did not
completely overlap (see Figure 10.3). Notice that innocent users’ scores are quite far below the thresholds
Zc, and behave like simple one-dimensional random walks. The cloud of scores will get wider and wider
over time (also with width roughly O(

√
t)), but Z (as a function of c) is such that it grows fast enough

over time to avoid ever hitting innocent users with high probability.

125

Secondly, note that the whole construction is basically identical for every time i. The symbols
are always generated using the same distribution function f∞, and the score function never
changes either. So in fact, if e.g. at some time i0 a second pirate broadcast is detected, one could
start a second universal Tardos scheme, running simultaneously with the first one. Both traitor
tracing algorithms could use the same symbols for their score functions, and both coalitions
can be traced simultaneously. The probability that an innocent user is accused in one of the
two schemes is then bounded by 2ε1 rather than ε1, but this can be solved by simply taking
ε′1 = ε1/2. One could start generalizing this, and make statements like any set of coalitions (with
cardinality constant in c, n) of size at most c can be traced in O(c2 ln(n/ε1)) time, taking ε′1 as
ε1 divided by the cardinality of the set of coalitions. In any case, this shows that we can trace
multiple coalitions simultaneously, even if the pirate broadcasts do not start at the same time.

Thirdly, note that for some fixed values of c and ε1, we get some threshold value Zc and a length
`c to use for this dynamic Tardos scheme. If however we used a different value ε′1, we would
have had a different value of Zc and a different codelength `c, but the process would be the
same. This means that in our scheme, before time `c(ε

′
1) we could also check whether user scores

exceed Zc(ε
′
1). In other words: besides running the dynamic Tardos scheme for each c, for some

fixed ε1, we could also simultaneously run the dynamic Tardos scheme for each c, for some other
fixed ε′1. Here we do get in trouble when really running these schemes simultaneously (since
you have to decide whether you disconnect a suspect or not), but one could use these other
thresholds Zc(ε

′
1) to calculate some sort of probability that a user is guilty. First the pirate

would cross a 90% barrier (i.e. the probability that innocent users cross this line is < 10%), then
a 95% barrier, and when he crosses a 99% barrier he is disconnected. Then already before the
user is disconnected, we can give a statistic to indicate the ’suspiciousness’ of this user. If a user
then does not cross the final barrier, one could still decide whether to disconnect him later.

Finally, another advantage of this scheme is another consequence of the fact that the scheme
is identical for every i, namely that we can concatenate several instances of this process to
form one larger process. For example, suppose one movie is broadcast, and during the tracing
process for this movie no users or only few users are caught. Then the pirates remain active,
and when another movie is broadcast (possibly soon after, or only weeks after) they could start
broadcasting again. By initializing the scores of users by the scores they had at the end of the
first movie (and also loading the counters tc), one could start the tracing process with the pirates
probably already having a pretty high score. So then the pirates will sooner hit the roof and be
disconnected, than if we had to start over with scores 0 for everyone.

10.5 Summary

The idea for a universal dynamic Tardos scheme consists of two ideas. First, the scheme is
based on running several dynamic Tardos schemes simultaneously, all using the same code. So
instead of needing

∑
c `c =

∑
cO(c2) = O(c3) symbols to run all dynamic Tardos schemes up

to a fixed value c sequentially, we re-use symbols from smaller values of c for larger coalitions
and run all schemes simultaneously. Then secondly, we noted that the distribution functions
fc are actually quite similar for different values of c; the difference is only a scaling factor, and
by disregarding ’bad values of p’ from the distribution f∞, the remaining symbols are exactly
distributed according to fc. So we can in fact run such schemes simultaneously, if we only
disregard part of the data for fixed values of c.

Since all the hard work was already done in earlier chapters to prove that the dynamic Tardos
scheme is secure, the proofs in this chapter then followed easily. The result is that we have a
fully dynamic scheme based in the Tardos scheme, which can trace a coalition of any unknown
size c using at most O(c2 ln(n/ε1)) symbols. This improves upon results by Tassa (Chapter

126

7) by a factor c2, i.e. a huge improvement. After that we saw that this scheme also has some
advantages w.r.t. flexibility, which can be used by the distributor in his implementation of the
traitor tracing scheme.

Summarizing, we can say that the scheme discussed in this chapter is very interesting, both
theoretical and practical.

127

128

Chapter 11

The staircase Tardos scheme

11.1 Introduction

In the third part of the Tardos Quadrilogy, we saw that we can convert the dynamic Tardos
scheme for fixed c into a universal scheme for finding any coalition of any size. That is, if a
coalition has size c0, then with high probability the scheme will find and disconnect all c0 traitors
in O(c20 ln(n/ε1)) time, rather than O(c2 ln(n/ε1)) time, where c is some large upper bound to
the number of colluders. Using a universal distribution function which can be used for all Tardos
schemes, and then running several dynamic Tardos schemes simultaneously, we saw we are able
to achieve this goal.

In this chapter, we investigate a different transition from the dynamic Tardos scheme to a
universal Tardos scheme, where only one scheme has to be run simultaneously. So with this
scheme, the advantage is that we only have to keep one score per user. Also, since here we do
not disregard any data, we can prove that after a fixed number of positions `c, with probability
1− ε2 we will have caught all colluders, if a coalition has size c or less (unlike in the universal
Tardos scheme, where due to an increase in the codelength (which itself is a random variable)
the codelength is not really fixed). The price we pay however may be higher than the gains
described above, as now the scheme does not use a single distribution function f∞ for the
whole interval [0,∞) anymore, but a function f1 for the interval [0, `1) and functions f∗i+1 for
the intervals [`i, `i+1). This means that the scheme is less flexible; for instance, we cannot
concatenate different schemes anymore, since the distribution functions f1 and f∗i are essentially
different.

So how does the scheme work, and what are these functions f∗c ? Well, to make the Tardos proof
mechanism work, we do not need the same distribution of the values of p on the whole interval
[0, `), as the proof even works if the values of p are known to the users. In particular, sorting
the values of p, permuting the values of p in any way, or using a distribution fA on [0,m) and a
distribution fB on [m, `c) such that on average we get fc, will not cause the proof method to
fail. Here we use the latter, by using different distribution functions on different intervals. All
we need is that in total, the distribution is fc(p).

The construction is now as follows. On the interval [0, `1) (i.e. for catching coalitions of size 1) we
use the distribution function f1(p), so that on [0, `1), the values of pi are distributed according
to f1(p). For the interval [`1, `2), we use some distribution function f∗2 (p) for the values of pi,
such that on the complete interval [0, `2) the values are distributed according to f2(p). Similarly,
on [`2, `3) we use f∗3 (p), and more generally on [`c, `c+1) we use f∗c+1(p), such that on [0, `c+1)
the values of p are distributed according to fc+1(p).

So how do we choose these functions f∗c+1(p)? For this we simply use that we want that taking the

129

`

Z

t

Sj

`c`2`1

Z1

Z2

Zc

.

.

.

t

Sj

.

.

.

. ..

Zc+1

Figure 11.1: A sketch of the transition from the dynamic Tardos scheme (left) to the staircase Tardos
scheme (right). The blue line again indicates the threshold, above which users are accused and disconnected
from the system. The scheme lends its name from the ’staircase’ on the right, which roughly grows as
O(
√
t) over time (since Z grows linear in c, and ` grows quadratic in c). Every user has one score

function, which has to stay below the staircase for them to remain connected.

union of [0, `c) with distribution fc and [`c, `c+1) with distribution f∗c+1 gives an interval [0, `c+1)
with distribution fc+1. In other words, we want that `c ·fc(p)+(`c+1−`c) ·f∗c+1(p) = `c+1 ·fc+1(p)
for each p. Isolating f∗c+1 in this equation, we get

f∗c+1(p) =
`c+1fc+1(p)− `cfc(p)

`c+1 − `c
. (11.1)

An important question is: Is this a well-defined distribution function? One can check that indeed,
this is all well-defined for any p, and the only non-trivial requirement we should check is that
f∗c+1(p) ≥ 0 for all p. As it is a safe assumption to say that `c+1 − `c > 0, this comes down to
the question whether `c+1fc+1 > `cfc for any c and p. In other words: Is hp(c) = `cfc(p) an
increasing function of c, for any p?

First, recall that `c = K1c
2 for some constant K1 > 0 not (or only very slightly) depending on

c, and fc(p) = p−1/2(1 − p)−1/2(π −K2c
−4/3)−1 for some constant K2 > 0 not (or only very

slightly) depending on c. Filling this in in hp(c) = `cfc(p) gives

hp(c) =
K1√
p(1− p)

· c2

π −K2c−4/3
, (11.2)

h′p(c) =
K1√
p(1− p)

· 2cπ − 10
3 K2c

−1/3

(π −K2c−4/3)2
. (11.3)

For large c it is obvious that h′p(c) is positive, and the numerator of the second fraction of h′p(c)
is increasing in c, hence h′p(c) > 0 for all c ≥ 2 if h′p(2) > 0, which one can easily verify. So
indeed, hp(c) is increasing in c for any p, and f∗c+1(p) is a well-defined distribution function on
[δc+1, 1− δc+1].

Finally, we have not yet discussed the threshold Z. For this, we now use the staircase, such
that on the interval [0, `1) its height is Z1, and on [`c, `c+1) its height is Zc+1. This will again
guarantee that innocent users will stay below the line, while Z grows slowly enough for any
coalition score to cross this threshold.

130

11.2 Construction

Let us now give the complete construction of the staircase Tardos scheme. Let n ≥ 2 be a
positive integer as usual, and let ε1, ε2 ∈ (0, 1) be the desired upper bounds for the soundness and
completeness error probabilities respectively. Then the staircase Tardos fingerprinting scheme
works as follows.

1. Initialization

(a) Take the vector ~κ such that
∑∞

c=1 κc ≤ 1.

(b) Take the vector ~k according to kc = ln(n/κcε1).

(c) Take parameters ~λ, ~ζ, ~d such that for some parameters ~α, ~ρ,~γ, ~σ, for each c the following
requirements are satisfied:

αc ≥
√
dc

h(ρc)
√
c
, (S1)

ζc
αc
− ρcλc

α2
c

≥ 1 +
ln(2)

kc
, (S2)

2− 4
dc

π
− h−1(σc)σc√

dcc
≥ γc, (C1)

γcλc − ζc ≥
(
η +

σc + ln(2)

kc

)√
dc
σ2c c

. (C2)

(d) Take the codelength vector ~̀ according to `c = λcc
2kc.

(e) Take the accusation offset Z according to Z = ζ1k1.

(f) Take the cutoff vector ~δ according to δc = 1/(dcc).

(g) Take the initial score Sj for each user j according to Sj = 0 for all c.

2. Generation/Distribution/Accusation
For each time i ≥ 1, let c′ be such that i ∈ [`c′−1, `c′) (with `0 = 0), let Z = Zc′ = ζckc,
and do the following.

(a) Select pi ∈ [0, 1] from the distribution function f∗c′(p):

f∗c′(p) =
1

`c′ − `c′−1

(
`c′

π − 4δ′c′
− `c′−1
π − 4δ′c′−1

)
1√

p(1− p)
. (11.4)

(b) For each user j, select Xji according to P[Xji = 1] = 1− P[Xji = 0] = pi.

(c) Send to each connected user j the ith symbol Xji.

(d) Intercept the pirate output yi, or terminate if there is none.

(e) Calculate the scores for position i, according to:

Sji =

+
√

(1− pi)/pi if Xji = 1, yi = 1,

−
√
pi/(1− pi) if Xji = 0, yi = 1,

−
√

(1− pi)/pi if Xji = 1, yi = 0,

+
√
pi/(1− pi) if Xji = 0, yi = 0.

(11.5)

(f) Update the score of each user according to Sj := Sj + Sji.

(g) If Sj > Z then disconnect user j.

131

11.3 Results

For the staircase Tardos scheme described above, we get the following results.

Theorem 11.1. Let the staircase Tardos scheme be constructed as above. Then the probability
of ever accusing an innocent user is at most ε1/n, hence the probability of never disconnecting
any innocent users is at least 1− ε1.

Proof. We chose the parameters λc, . . . , σc such that they satisfy the requirements from the
dynamic Tardos scheme with parameter c and error probability ε1,c = κcε1. Hence for each c we
know that the probability of having Sj > Zc before time `c is at most κcε1/n. So the probability
that the user is ever accused is bounded from above by ε1/n, and the proof is completed by
noting that (1− ε1/n)n ≥ 1− ε1.

Theorem 11.2. Let the staircase Tardos scheme be constructed as above. Let C be a coalition
of some a priori unknown size c. Then the probability that by time `c some members of the
coalition are still active is bounded from above by ε2.

Proof. We chose the parameters λc, . . . , σc such that they satisfy the requirements from the
dynamic Tardos scheme with parameter c, so the result follows from the proofs given in that
chapter.

Example We again use the sequence κc = 6/(π2c2). Let n = 100 and c = 10, and let
ε1 = ε2 = 0.01. Figures 11.2, 11.3, 11.4 graphically show a simulation of this situation, where
the pirates used a pirate-symmetric strategy. The graphs show the scores of users set against
the time, with different lines corresponding to different users. With high probability, we expect
to catch all colluders before reaching the 10th step of the staircase, and in this case we even
catch the last pirates at the 6th step of the stairs.

11.4 Summary

Again this chapter was relatively short, as most of the work had already been done before. The
idea of this chapter is to extend the dynamic Tardos scheme to a universal Tardos scheme in
a different way, such that we only have to keep one score for each user. To do this however,
we needed to update the distribution functions for the values of p at every time `c. How to
update this distribution was quite trivial, as it is clear which result we want to get. After that
the results again followed easily.

In general, the universal Tardos scheme will be more practical, as the memory usage for scores
of users is not an issue, while the universal Tardos scheme is more flexible than this scheme in
several ways. However, this staircase Tardos scheme has its (theoretic) charms as well, using
only one score for each user, and using all data for each c. And of course, if the added flexibility
is not needed or not useful, then this staircase Tardod scheme is still slightly more efficient, as
for any fixed c the time at which `c is reached here (simply t = `c) is smaller than the time at
which `c is reached in the universal Tardos scheme (t > `c).

132

0 1000 2000 3000 4000 5000 6000 7000
0

100

200

300

400

500

600

� t

�
S

jHtL

Figure 11.2: The scores of all pirates over time. The blue staircase corresponds to the increasing value
of Z, and the different lines correspond to different users. In this case there are 10 pirates, and even
before t = `6 we have already caught all pirates. One pirate was already disconnected before time `4, and
one pirate was disconnected before time `5.

0 1000 2000 3000 4000 5000 6000 7000
0

100

200

300

400

500

600

� t

�
S

jHtL

Figure 11.3: The average pirate score (i.e. A(t) = 1
|C|
∑
j∈C Sj(t)) over time. Regardless of the strategy

used, this line is close to linear in t, which intuitively shows that the scheme will eventually catch all
pirates, as the thresholds only grow as O(

√
t). The straight line and the curve are put in to further

emphasize this asymptotic behaviour of the scores and thresholds. Even if the scheme fails to catch all
pirates before time `c, then with even higher probability all pirates are caught before time `c+1.

133

0 1000 2000 3000 4000 5000 6000 7000

-200

0

200

400

600

� t

�
S

jHtL

Figure 11.4: All scores of all 100 users in the system. Note that innocent users’ scores are quite far
below the threshold Z(t), and behave like simple one-dimensional random walks. The cloud of scores will
get wider and wider over time (with width roughly O(

√
t), but Z grows fast enough over time to avoid

ever hitting innocent users with high probability.

134

Chapter 12

Publications

As we believe that the results from Part II are of scientific value, the result of this project is not
only this report. Most of the other products are not yet completed, but we mention them here
anyway.

12.1 Paper: Optimal symmetric Tardos traitor tracing codes

Since the results in Chapter 8 improve upon results from Skoric et al. [SKC08], Nuida et
al. [NFH+09] and Blayer and Tassa [BT08], we decided to write a paper on the results from
Chapter 8. Since Skoric et al., Nuida et al. and Blayer and Tassa all published their work in the
journal Designs, Codes and Cryptography, we plan to submit it there as well. This will happen
not long after this project is finished, as the paper is nearly completed. But of course we cannot
yet guarantee that the paper will be accepted there, or when it will be published. A preliminary
version of this paper can be found in Appendix A.

12.2 Paper: Dynamic Tardos traitor tracing

Another plan for the future is to write a paper about Chapters 9, 10 and 11, i.e. about dynamic
traitor tracing schemes based on the Tardos scheme. Since the results of these chapters are
both of scientific and practical value, and improve upon the results from e.g. Tassa [Tas05] by a
factor c2, it should not be a problem to get this paper accepted somewhere, once it is finished.
However this paper is far from finished, and we also do not give a preliminary version here yet.

12.3 Irdeto Patent

Since the results about dynamic Tardos traitor tracing are of practical use to Irdeto, they decided
to file a patent regarding these results. More details about this patent may follow later.

135

136

Chapter 13

Conclusion

13.1 Comparison

To summarize and compare the schemes discussed in this report, we have put together a table
containing the most important schemes, their alphabet sizes and their codelengths. Of course
many other aspects play a role as well when choosing which scheme to use, but these two
parameters are often the two most important factors. The result can be found in Table 13.1.
Note that in this table, we have used big-Oh notation for the codelengths, and have disregarded
constants. Also, we did not mention any of the Tardos scheme variants and improvements
here, besides our own contributions from Part II, as all Tardos variants have the same order
codelength of O(c2 ln(n/ε)).

To compare schemes more closely, we can also focus on binary (and therefore probabilistic)
schemes only, and not disregard constants. Table 13.2 shows how several schemes mentioned
in this report compare in that sense. Here we did mention the constants, for small c and for
asymptotically large c.

From the last table it is obvious that especially the dynamic schemes presented in this report
improve upon literature by a large factor. The scheme of Tassa has a codelength (time) which is
roughly the square of the codelength (time) used for our schemes. As for the contribution from
Chapter 8, the asymptotic codelength is better than that of any other known Tardos variant,
but for small c Nuida et al. have better results.

13.2 Summary

In Part I we gave an extensive overview of many schemes found in literature. We discussed many
results we found in a big pile of articles, which we then sorted in four categories of traitor tracing
schemes. Hopefully Part I will save some people, who want to get acquainted with results about
collusion-resistant traitor tracing schemes, some work, by proving a structured overview of many
of these results. However, I do not claim this list is incomplete. In fact, since I only had 9
months to do all this work, I had to make some choices of which articles I should and should not
discuss in this report. In particular, the scheme of Jin and Lotspiech [JLN04], which is used in
Blu-ray, and the broadcast scheme of Fiat and Naor [FN94,NNL01] are not discussed here, partly
because they did not seem to fit with the categorization used in Part I. Also, some miscellaneous
schemes for fixed small coalition sizes (e.g. one suggested by Sebe [SDF02], which was found to
be broken by Schaathun [Sch08] if users are not forced to contribute equally to the fingerprint,
and one suggested by Schaathun [Sch03]) are not discussed here, due to time limitations. But

137

q `, t
All schemes (alphabet) (codelength,time)

Deterministic static schemes q ≥ c+ 1 ` ≥ Ω(c2 log(n))

- Staddon et al. q = O(c2 log(n)) ` = O(c2 log(n))
- Alon et al. q = c+ 1 ` = O(c2 log(n))

Probabilistic static schemes q ≥ 2 ` ≥ Ω(c2 ln(n/ε1))

- Boneh and Shaw (cubic) q = 2 ` = O(n3 ln(n/ε1))
- Boneh and Shaw (quartic) q = 2 ` = O(c4 ln(n/ε1) ln(c/ε1))
- Tardos q = 2 ` = O(c2 ln(n/ε1))
- Laarhoven, De Weger (Ch. 8) q = 2 ` = O(c2 ln(n/ε1))

Deterministic dynamic schemes q ≥ c+ 1 t ≥ Ω

(
c2

q − c + c logc(n)

)

- Fiat and Tassa q = 2c+ 1 t = O(c log(n))
- Berkman et al. (clique) q = c+ 1 t = O(c3 log(n))
- Berkman et al. (degree) q = c+ 1 t = O(c3 log(n))
- Berkman et al. (optimal) q = c+ 1 t = O(c2 + c log(n))

Probabilistic dynamic schemes q ≥ 2 ?

- Tassa q = 2 ` · t = O(c4 log(n) ln(c/ε1))
- Laarhoven et al. (Ch. 9) q = 2 t = O(c2 ln(n/ε1))
- Laarhoven et al. (Ch. 10) q = 2 t = O(c2 ln(nc2/ε1))
- Laarhoven et al. (Ch. 11) q = 2 t = O(c2 ln(nc2/ε1))

Table 13.1: A comparison of schemes presented in this report. The four headers correspond to the four
Chapters 4, 5, 6 and 7 respectively, with the exception of the new contributions from Part II.

still, we hope that the overview from Part I is somewhat complete, and understandably explains
the different schemes.

Then, in Part II we gave four new suggestions for improved traitor tracing schemes, all based
on the Tardos scheme. We argued that our contributions are in fact good and noteworthy, and
improve upon the best results from literature either by a small margin (Chapter 8, compared to
Nuida et al.), or by a large margin (Chapter 10, compared to Tassa). As we saw in the previous
chapter, we think the results are even good enough to publish them in scientific magazines, and
Irdeto even patented the results based on dynamic Tardos traitor tracing. However, both papers
and the patent are still a work in progress, and some of it will only finish after this report is
already finished. Only the paper based on the improvements from Chapter 8 is almost done,
and a preliminary version is given in the Appendix.

13.3 Future work

Let us finally mention some directions for future work, based on things that either the author of
this report did not have the time for or simply could not solve. Some of these problems may be
extensive enough to keep a new Master student busy for 9 months, while some (other) problems
may be solved in a few hours by smart people.

138

`, t `, t
Probabilistic binary schemes (for small c) (for large c)

Static schemes ` ≥ Ω(c2 ln(n/ε1)) ` ≥ 1.38c2 ln(n/ε1)

- Boneh and Shaw (cubic) ` ≈ 2n3 ln(n/ε1) ` ≈ 2n3 ln(n/ε1)
- Boneh and Shaw (quartic) ` ≈ 32c4 ln(n/ε1) ln(c/ε1) ` ≈ 32c4 ln(n/ε1) ln(c/ε1)
- Tardos ` = 100c2 ln(n/ε1) ` = 100c2 ln(n/ε1)
- Vladimirova et al. ` ≈ 90c2 ln(n/ε1) ` ≈ 39.48c2 ln(n/ε1)
- Blayer and Tassa ` ≈ 85c2 ln(n/ε1) ` ≈ 19.74c2 ln(n/ε1)
- Skoric et al. ` ≈ 50c2 ln(n/ε1) ` ≈ 9.87c2 ln(n/ε1)
- Nuida et al. ` ≈ 5c2 ln(n/ε1) ` ≈ 5.35c2 ln(n/ε1)
- Laarhoven, De Weger (Ch. 8) ` ≈ 24c2 ln(n/ε1) ` ≈ 4.93c2 ln(n/ε1)
- Amiri and Tardos (impractical) ` = 1c2 ln(n/ε1) ` ≈ 1.39c2 ln(n/ε1)

Dynamic schemes ? ?

- Tassa ` · t = O(c4 log(n) ln(c/ε1)) ` · t = O(c4 log(n) ln(c/ε1))
- Laarhoven et al. (Ch. 9) t ≈ 26c2 ln(n/ε1) t ≈ 4.93c2 ln(n/ε1)
- Laarhoven et al. (Ch. 10) t ≈ 26c2 ln(nc2/ε1) t ≈ 4.93c2 ln(nc2/ε1)
- Laarhoven et al. (Ch. 11) t ≈ 26c2 ln(nc2/ε1) t ≈ 4.93c2 ln(nc2/ε1)

Table 13.2: A comparison of binary probabilistic traitor tracing schemes. Besides the schemes of Boneh
and Shaw, and Tassa, all schemes in the table are based on the Tardos scheme. Note that the terms c2 in
the logarithms of the last two rows are in fact arbitrary; the power of c depends on the κc used. If c is
expected to be small, then a larger power of c may be more efficient, while for large c one would get a
power c1+λ with λ small.

13.3.1 The Tardos scheme: Discrete distribution functions

Nuida et al. [NFH+09] investigated a version of the Tardos scheme, where the continuous
distribution function F (for selecting values pi) was replaced a discrete distribution function,
based on Legendre polynomials. With such distributions they prove that for small c the
codelength can really be reduced further than the lower bound of π2/2 as in the Tardos scheme
with continuous F . So certainly for small c there are advantages of using this approach.
Unfortunately I did not have the time to thoroughly investigate this paper in my research.

However, one can easily establish that indeed, for small c and different (discrete) f , it is possible
to obtain much shorter codelengths than in the regular Tardos construction. Suppose e.g. c = 2
and we use the Tardos scheme with f(1/2) = 1 (i.e. pi = 1

2 for all i). Let us write RW(n) for a
standard random walk X =

∑n
i=1Xi, where P[Xi = ±1] = 1

2 . Obviously innocent users’ scores
Sj(t) behave like standard random walks, while for a coalition of size 2 we have Si = +2 if both
colluders have the same symbol and Si = 0 if they receive different symbols. So S(t)− t behaves
like a standard random walk as well. Using the Chernoff bound for these standard random walks
we get:

P[j ∈ σ(ρ(X))] = P[RW(`) > Z] ≤ e−Z2/2` ≤ ε1/n, (13.1)

P[σ(ρ(X)) ∩ C = ∅] ≤ P[RW(`) < 2Z − `] ≤ e−(`−2Z)2/2` ≤ ε2. (13.2)

Note that (13.1) and (13.2) only hold if Z > 0 (i.e. dz > 0) and 2Z < ` (i.e. dz < d`). Filling in

k = ln(n/ε1), ` = d`c
2k, Z = dzck, η = ln(1/ε2)

ln(n/ε1)
and c = 2 we get d2z ≥ 2d` and 4(d` − dz)2 ≥ 2ηd`.

139

The optimal solution is there where both inequalities are equalities:

dz = 2 +
√
η, (13.3)

d` =
(2 +

√
η)2

2
(13.4)

Hence for η = 1 we get d` = 4.5 , while for η → 0 we get d` → 2 . This small example already
shows that for small c we can use a different f to get codelengths much shorter than those
obtained by the regular Tardos construction (e.g. d` > 20 for c = 2).

So one could investigate the use of discrete distributions f for the Tardos scheme, and in
particular study the paper by Nuida et al. After investigating this paper and analyzing and
understanding their results, one could ask questions like: Can we improve upon their results? Can
we tighten their analysis? Can we improve upon their asymptotic result of `→ 5.35c2 ln(n/ε1)?
Can we derive lower bounds for the codelength in the case of such distribution functions F?
Note that as the optimal discrete distributions for given c take on c different values, one would
expect that for c → ∞ one obtains in the limit a continuous distribution, and probably the
optimal asymptotic continuous distribution as well. So why are the asymptotic results described
in Chapter 8 better than those in Nuida et al. [NFH+09]?

13.3.2 The Tardos scheme: Bigger alphabets

In Chapter 10 we saw a new, dynamic Tardos scheme to trace a whole coalition using a binary
alphabet and a codelength of ` = O(c2 ln(n/ε1)). The reason of using a binary alphabet the was
that the analysis is more simple in the binary case, and that we have clear results for the binary
case. So one could investigate whether using non-binary alphabets would lead to significant
further improvements. Especially for the new Tardos scheme this is a relevant question, since
there because of the offsets one needs to calculate scores per user and per c. With no offset δ one
could use the same distribution function for all c, and only maintain one score per user. For this
one would first have to see whether it is possible to use a non-binary Tardos scheme with δ = 0
for c <∞, i.e. see if with some different proof method one can prove secureness for this case.

13.3.3 Rate of c-secure frameproof codes

Chapter 4 contains a conjecture (Conjecture 4.36) about the minimal rate of c-secure frameproof
codes, which involves intersecting set systems and projective planes over F2. One obvious
problem is: Can we prove or disprove this conjecture? This is a minor problem, and it is more a
theoretical question related to intersecting set systems and projective planes than a practical
question related to fingerprinting schemes. Maybe one can solve it in a few hours, or maybe this
is just a tough problem to crack.

13.3.4 Deterministic dynamic schemes for known coalition sizes

The lower bounds derived by Berkman et al. all need the requirement that c is unknown to the
tracer. But what happens when c is known? So (a) what happens to the lower bounds (do the
same lower bounds hold?), and (b) can we then get better schemes? For one, we can improve
the degree algorithm when c is known, as we immediately lose a factor c in the running time for
determining c. But more importantly: how does the optimal algorithm change when c is known?
Or can we construct a new algorithm specifically for known c, that is more efficient or simpler
than the optimal algorithm?

140

13.3.5 Probabilistic dynamic schemes: Lower bounds

As the area of probabilistic dynamic schemes is still somewhat unexplored, there are many
questions one could ask here. One interesting one may be whether we can prove any good lower
bounds on the time (length) for any probabilistic dynamic scheme. Could schemes exist that are
orders of magnitude better than for example the universal Tardos scheme?

13.3.6 Other schemes

One could also investigate other schemes not discussed in this report, such as the Blu-ray
implementation by Jin and Lotspiech. How do other schemes compare to the schemes discussed
here? What are advantages/disadvantages of those schemes?

13.3.7 Watermarking

Related to fingerprinting is watermarking, i.e. the process of actually embedding the codewords
into the digital data. One could investigate how the embedding is done in practice, and what
this means for the fingerprinting model. Perhaps the real world model is then even different
from the models given here, and maybe that model requires a different solution. Or one could
investigate the problem of watermarking on itself, which forms a whole new problem of its own.

141

142

Appendix A

Optimal symmetric Tardos traitor
tracing codes

The following paper, which has not yet been submitted, is a result of the work described in
Chapter 8. The work is based partly on work by Blayer and Tassa [BT08], and on work by
Skoric et al. [SKC08], and the results improve upon results from these papers two paper as
well as upon results from Nuida et al. [NFH+09] Since these three papers were all published in
Designs, Codes and Cryptography, we hope that this journal will also accept our paper.

The paper is close to being finished, but it has not yet been submitted.

143

Des. Codes Cryptogr. manuscript No.
(will be inserted by the editor)

Optimal symmetric Tardos traitor tracing codes

Thijs Laarhoven · Benne de Weger

Received: date / Accepted: date

Abstract For the Tardos fingerprinting scheme, we show that by combining the
symbol-symmetric accusation function of Škorić et al. with the improved analysis
of Blayer and Tassa we get further improvements. Our construction gives codes that
are up to 4 times shorter than Blayer and Tassa’s, and up to 2 times shorter than the
codes from Škorić et al. Asymptotically, we achieve the theoretical optimal code-
length for Tardos’ distribution function and the symmetric score function. For large
coalitions, our codelengths are asymptotically about 4.93% of Tardos’ original code-
lengths, which also improves upon results from Nuida et al.

Keywords Fingerprinting codes ·Watermarking · Traitor tracing schemes

Mathematics Subject Classification (2000) 68P30 · 94B60

1 Introduction

Watermarking digital content allows distributors of copyrighted digital data to em-
bed so-called fingerprints into their data in such a way that each copy of the data
can be uniquely identified. These watermarks are made in a robust way, so that users
cannot change or remove them from the content. If a copy of the data is then il-
legally distributed to unauthorized users and intercepted by the distributor, he can
extract the fingerprint from the copy and find the person whose fingerprinted data
was distributed. Actions can then be taken against this user, to prevent further illegal
distribution.

To be able to trace the watermarked data back to the user, we need that the embed-
ded fingerprints for each user are different. However, by comparing their differently
watermarked copies of the content, multiple malicious users can form a coalition and

T.M.M. Laarhoven · B.M.M. de Weger
Eindhoven University of Technology, Eindhoven, The Netherlands.
This work was done when the first author was with Irdeto, Eindhoven, The Netherlands. The content is
mostly based on the first author’s Master’s thesis.

2 Thijs Laarhoven, Benne de Weger

detect differences in their content. Assuming that besides the watermarks all copies
are the same, this allows coalitions to detect part of the watermark. By editing this
data, they can then create a forged copy, which contains the same digital content as
their original copies, but has a forged fingerprint that cannot be traced back to them
directly. Under the marking assumption, which says that colluders can only detect
and edit fingerprint positions if their fingerprints do not all match on that position,
there are ways to construct fingerprinting schemes such that any forged copy can be
traced back to at least one of the colluders. This involves finding a construction for
fingerprints for each of the users, and finding a way to trace back forged copies to
guilty users.

1.1 Model

Let U = {1, . . . ,n} denote the set of the n users that received watermarked content.
Here a user corresponds to one watermarked copy of the content, so a person who
possesses several differently watermarked copies of the data is assumed to control
multiple users. For each user j the distributor generates a fingerprint (also called a
codeword), which is usually denoted by x j. This codeword is a vector of length ` (the
codelength) of symbols from an alphabet Q of size q. The case q = 2 corresponds to
the binary alphabet, which is usually taken as Q = {0,1}. All fingerprints together
form the fingerprinting code C = {x1, . . . ,xn}. A common way of representing this
code is by putting all codewords as rows in a matrix X according to X ji = (x j)i.

After assigning codewords to users and distributing the watermarked copies, a
subset C ⊆U of c users (called colluders or pirates) may form a coalition to create
a forged copy. Using some pirate strategy ρ , a function Q`×c → Q`, they construct
a forged copy, which has some unknown distorted fingerprint ρ(X) = y called the
forgery. For the pirate strategy ρ , we assume that the marking assumption holds, i.e.
if for all j ∈C the pirates have (x j)i = ω for some position i and symbol ω ∈Q, then
the coalition is forced to output yi = ω . On other positions, we assume that colluders
are free to choose any of the symbols from the alphabet.

Finally, after the coalition has created a forged copy, we assume the distributor
intercepts it and extracts the forgery y from the data. He then runs some tracing
algorithm σ on the forgery, to get a subset σ(y) ⊆U of users that are accused. The
accusation is said to be successful if no innocent users are accused (i.e. σ(y) ⊆ C)
and at least one guilty user is accused (i.e. σ(y)∩C 6= /0).

In the setting of probabilistic schemes, the code X and the tracing algorithm σ
may depend on some random variables. The events of not accusing any innocent users
(soundness) and accusing at least one guilty user (completeness) then also depend on
these random variables. Then, instead of demanding that a fingerprinting scheme is
always sound and complete, we may demand that the probability of failure is bounded
by some small value ε , where the probability is taken over these random variables.
This leads to the following definitions of ε1-soundness and ε2-completeness.

Definition 1 (Soundness and completeness) Let C⊆U be a coalition of size at most
c, and let ρ be some pirate strategy employed by this coalition. Then a fingerprinting

Optimal symmetric Tardos traitor tracing codes 3

scheme (X ,σ) is called ε1-sound if

P[σ(ρ(X)) 6⊆C]≤ ε1.

Similarly, a fingerprinting scheme is called ε2-complete if

P[σ(ρ(X))∩C = /0]≤ ε2.

As we will see later, ε1/n and ε2 are closely related in the Tardos fingerprinting
scheme. Therefore it is convenient to introduce the notation η = log(ε2)/ log(ε1/n)
such that ε2 = (ε1/n)η , which describes how big ε2 is, compared to ε1/n. Also, we
sometimes simply say a scheme is secure, to denote that it is sound and complete for
certain (implicit) parameters ε1 and ε2.

1.2 Related work

In [7], Tardos investigated probabilistic binary fingerprinting schemes where small
margins of error are allowed. He proved that a codelength of ` = Ω(c2 ln(n/ε1)) is
necessary to achieve soundness and completeness, while in the same paper he also
gave a construction with a codelength of ` = 100c2 ln(n/ε1). This construction is
often referred to as the Tardos scheme. In [1,3] the lower bound on the codelength
was further tightened, to show that one needs ` ≥ 2ln(2)c2 ln(n/ε1) for sufficiently
large c and q = 2, to achieve soundness and completeness.

Since the scheme of Tardos had a constant 100 in front of the c2 ln(n/ε1) in the
codelength, many papers focused on constructing a scheme with the same order code-
length, but with a smaller constant. For example, using a discrete distribution function
in the Tardos scheme, Nuida et al. showed in [4] that one can achieve codelengths
of ` < 5c2 ln(n/ε1) in some cases with small c, while for large c they achieved an
asymptotic codelength of `≈ 5.35c2 ln(n/ε1). Using a different approach, Amiri and
Tardos showed in [1] that with a computation-heavy construction, one can approach
the theoretical lower bound of `= 2ln(2)c2 ln(n/ε1) for large c.

In this paper we will focus on the binary Tardos scheme, which was introduced
in [7] and further analyzed and improved in e.g. [2,4–6]. We will focus on two im-
provements in particular. In [2], Blayer and Tassa made the proofs of soundness and
completeness of [7] tighter by introducing several auxiliary variables which were to
be optimized later, instead of fixing them in advance. In that paper the construction
of the Tardos scheme essentially remained the same, but it was shown that a code-
length of ` = 85c2 ln(n/ε1) is also sufficient to prove security. In [5], Škorić et al.
did change the scheme, by making the score function of the Tardos scheme symbol-
symmetric. This also lead to shorter codelengths, giving asymptotic codelengths of
` = (π2 + o(1))c2 ln(n/ε1) ≈ 9.87c2 ln(n/ε1) for large c, while maintaining sound-
ness and completeness. Furthermore assuming that the scores of innocent users and
the joint coalition score are normally distributed, Škorić et al. showed in [5, Section
6] that an asymptotic codelength of `= (π2

2 +o(1))c2 ln(n/ε1) is then both sufficient
and necessary. Since by the Central Limit Theorem these scores will in fact converge
to normal distributions for asymptotically large c, this also provides a lower bound on
the codelength, when using the Tardos distribution function and the symmetric score
function.

4 Thijs Laarhoven, Benne de Weger

1.3 Contributions and outline

Combining the symbol-symmetric score function from Škorić et al. with Blayer and
Tassa’s sharp analysis, we will prove ε1-soundness and ε2-completeness for all c≥ 2
and η ≤ 1 with a codelength of ` = 23.79c2 ln(n/ε1). This improves upon the code-
length from Blayer and Tassa by a factor more than 3.5, and it improves upon the
original Tardos scheme by a factor of more than 4. Furthermore, for bigger c and
smaller η the constant in front of the c2 ln(n/ε1) in ` further decreases, easily leading
to a factor 10 improvement over the original Tardos scheme and a factor slightly less
than 4 improvement over the Blayer and Tassa analysis.

Similar to work of Škorić et al., we also look at the asymptotics of our scheme,
and show that for large c, we can prove soundness and completeness for a codelength
of `= (π2

2 +O(c−1/3))c2 ln(n/ε1)≈ 4.93c2 ln(n/ε1). This improves upon the asymp-
totic results from Škorić et al. by a factor 2, and we achieve the asymptotic optimal
codelength which Škorić et al. proved to be secure under the added assumption that
the distributions of scores are normal distributions. We therefore close the gap of a
factor 2 between the best known provably secure codelength and the asymptotic op-
timal codelength, for Tardos’ distribution function and the symmetric score function.
These results also improve upon the asymptotic codelengths from Nuida et al., who
used different discrete distribution functions F , by more than 7%.

The paper is organized as follows. In Section 2 we first give the construction of
the (symmetric) Tardos scheme, and compare our results with earlier results from
literature. In Sections 3 and 4 we then prove that the soundness and completeness
properties hold under our assumptions on the parameters. In Section 5 we then give
results similar to those in [2, Section 2.4.5] on how to find the optimal set of param-
eters that satisfies the conditions for our proof method to work, and minimizes the
codelength. There we also give such minimal codelengths, for several values of c and
η . Finally in Section 6 we prove the results stated above for asymptotically large c.

2 Construction and results

First we present the construction of the Tardos fingerprinting scheme, as in [2], where
we use auxiliary variables d`,dz,dδ for the codelength `, accusation offset Z and
cutoff parameter δ respectively. The only difference between our construction and
that of Blayer and Tassa is in the score function we use. While Blayer and Tassa used
the asymmetric score function from Tardos’ original scheme, we use the symbol-
symmetric score function from Škorić et al.

2.1 The Tardos fingerprinting scheme

Let n≥ c≥ 2 be positive integers, and let ε1,ε2 ∈ (0,1) be the desired upper bounds
for the soundness and completeness error probabilities respectively. Let us write k =
ln(n/ε1) so that e−k = ε1/n. Let d`,dz,dδ be positive constants, with dδ > 1. Then
the symmetric Tardos fingerprinting scheme works as follows.

Optimal symmetric Tardos traitor tracing codes 5

1. Initialization
(a) Take the codelength as `= d`c2k. 1

(b) Take the accusation offset parameter as Z = dzck.
(c) Take the cutoff parameter as δ = 1/(dδ c), and compute δ ′ = arcsin(

√
δ) such

that 0 < δ ′ < π/4.
(d) For each fingerprint position 1 ≤ i ≤ `, select pi ∈ [δ ,1− δ] independently

from the distribution defined by the following CDF F(p) and PDF f (p):

F(p) =
2arcsin(

√
p)−2δ ′

π−4δ ′
, f (p) =

1
(π−4δ ′)

√
p(1− p)

. (1)

The function f (p) is biased towards δ and 1−δ and symmetric around 1/2.
2. Codeword generation

(a) For each position 1≤ i≤ ` and for each user 1≤ j ≤ n, select the ith entry of
the codeword of user j according to P[X ji = 1] = pi and P[X ji = 0] = 1− pi.

3. Accusation
(a) For each position 1 ≤ i ≤ ` and for each user 1 ≤ j ≤ n, calculate the score

S ji according to:

S ji =

+
√
(1− pi)/pi if X ji = 1,yi = 1,

−
√

pi/(1− pi) if X ji = 0,yi = 1,
−
√
(1− pi)/pi if X ji = 1,yi = 0,

+
√

pi/(1− pi) if X ji = 0,yi = 0.

(2)

(b) For each user 1≤ j≤ n, calculate the total accusation sum S j = ∑`
i=1 S ji. User

j is accused if and only if S j > Z.

Under certain conditions on the parameters d`,dz,dδ , which are specified in Sub-
sections 2.2 and 2.3, one can prove soundness and completeness, using (a modified
version of) Tardos’ proof construction. Note that, since this proof method uses sev-
eral non-tight bounds, it is very well possible that there exist sets of parameters that
do not satisfy these conditions, but still guarantee soundness and completeness. So if
the conditions are not satisfied, we can only conclude that the proof method does not
work in that case.

2.2 Results for the asymmetric Tardos scheme

In the original Tardos scheme, and in several papers discussing the Tardos scheme,
the score function is asymmetric in yi, as only the positions with yi = 1 are taken into
account for the accusations. The construction of this asymmetric Tardos scheme is
the same as in Subsection 2.1, but with the scores from (2) replaced by:

S ji =

+
√
(1− pi)/pi if X ji = 1,yi = 1,

−
√

pi/(1− pi) if X ji = 0,yi = 1,
0 otherwise.

(3)

1 Note that ` may not be integral, while the codelength of a code of course has to be integral. See
Appendix A for a short note on how to solve this minor problem in our construction.

6 Thijs Laarhoven, Benne de Weger

Blayer and Tassa performed an extensive analysis of this scheme in [2], and showed
that under the following assumptions, one can prove soundness and completeness
for given c and η . In these Theorems, the function h : (0,∞)→ (1

2 ,∞) is defined by
h(x) = λ if and only if ex = 1+ x+λx2. The function h−1 : (1

2 ,∞)→ (0,∞) denotes
its inverse function, and is defined by h−1(x) = (ex−1− x)/x2.

Theorem 1 [2, Theorem 1.1] Let the Tardos scheme be constructed as in Subsection
2.1, with the asymmetric score function from (3). Let dα ,r be positive constants, with
r > 1

2 , such that d`,dz,dδ ,dα and r satisfy the following two requirements:

dα ≥
√

dδ
h(r)
√

c
, (S1)

dz

dα
− rd`

d2
α
≥ 1. (S2)

Then the scheme is ε1-sound.

Theorem 2 [2, Theorem 1.2] Let the Tardos scheme be constructed as in Subsection
2.1, with the asymmetric score function from (3). Let s,g be positive constants such
that d`,dz,dδ ,s and g satisfy the following two requirements:

1− 2
dδ

π
− h−1(s)s√

dδ c
≥ g, (C1)

gd`−dz ≥ η
√

dδ
s2c

. (C2)

Then the scheme is ε2-complete.

Tardos’ original choice of parameters was the following, which allowed him to
prove his scheme is ε1-sound and ε2-complete for all c≥ 2 and η ≤√c/4 [7, Theo-
rems 1 and 2]:

d` = 100, dz = 20, dδ = 300, dα = 10, r = 1, s = 1, g =
1
4
.

Blayer and Tassa proved that to achieve ε1-soundness and ε2-completeness for all c≥
2 and η ≤ 1, the following choice of parameters is also provably secure [2, Section
2.4]:

d` = 85, dz = 15, dδ = 40, dα = 8, r = 0.611, s = 0.757, g = 0.2461.

In [6, Corollary 1], Škorić et al. showed that the following choice of parameters suf-
fices to prove soundness and completeness for asymptotically large c:

d`→ 4π2, dz→ 4π, dδ → ∞, dα → 2π, r = 1, s = h(1), g→ 1
π
.

According to the Central Limit Theorem, the scores of innocent users and the total
score of the coalition converge to certain normal distributions. Under the assumption
that the scores behave exactly like these normal distributions, Škorić et al. showed in

Optimal symmetric Tardos traitor tracing codes 7

[6, Corollary 3] that the following choice of parameters is then sufficient and neces-
sary to prove soundness and completeness:

d`→ 2π2, dz→ 2π, dδ → ∞.

Applying the analysis from Section 6 to the asymmetric Tardos scheme, we can prove
that the following choice of parameters is provably sufficient for large c:2

d`→ 2π2, dz→ 2π, dδ → ∞, dα → π, r→ 1
2
, s→ ∞, g→ 1

π
.

So with Blayer and Tassa’s proof construction, we obtain a 2 times shorter asymp-
totic codelength compared to the shortest provable codelength of Škorić et al. for the
asymmetric Tardos scheme, and we achieve the asymptotic optimal codelength for
the asymmetric Tardos scheme which Škorić et al. only achieved when they added
the assumption that scores behave like normal distributions.

2.3 Results for the symmetric Tardos scheme

We will prove in Sections 3 and 4 that with the following assumptions on the pa-
rameters, we can also prove soundness and completeness for the symmetric Tardos
scheme.

Theorem 3 Let the Tardos scheme be constructed as in Subsection 2.1, and let dα ,r
be positive constants, with r > 1

2 , such that d`,dz,dδ ,dα and r satisfy the requirements
from (S1) and (S2). Then the scheme is ε1-sound.

Theorem 4 Let the Tardos scheme be constructed as in Subsection 2.1, and let s,g
be positive constants, such that d`,dz,dδ ,s and g satisfy (C2) and the following re-
quirement:

2− 4
dδ

π
− h−1(s)s√

dδ c
≥ g. (C1’)

Then the scheme is ε2-complete.

Using the above results, in Section 5 we will prove ε1-soundness and ε2-
completeness for all c≥ 2 and η ≤ 1 for the following set of parameters:

d` = 23.79, dz = 8.06, dδ = 28.31, dα = 4.58, r = 0.67, s = 1.07, g = 0.49.

This improves upon the constants from Blayer and Tassa by a factor more than 3.5,
and it improves upon the original Tardos scheme by a factor more than 4. Further-
more, for bigger c and smaller η the values of d` further decrease, easily leading to a
factor 10 improvement over the original Tardos scheme.

2 These results can be obtained by applying the analysis from Section 6 to Blayer and Tassa’s original
analysis for the asymmetric Tardos scheme. The main difference is that then one needs g = 1

π + o(1)
instead of g = 2

π +o(1), which causes an extra factor 4 for d` and extra factors 2 for dz and dα .

8 Thijs Laarhoven, Benne de Weger

Škorić et al. showed that for asymptotically large c, the following set of param-
eters is sufficient for proving soundness and completeness in the symmetric Tardos
scheme [5, Corollary 1]:

d`→ π2, dz→ 2π, dδ → ∞, dα → π, r = 1, s = h(1), g→ 2
π
.

With the added assumption that the scores of innocent users and the joint score of
guilty users are normally distributed, Škorić et al. also showed that the following set
of parameters is sufficient for soundness and completeness, for asymptotically large
c [5, Corollary 2]:

d`→
π2

2
, dz→ π, dδ → ∞.

Since by the Central Limit Theorem these scores will also converge to normal distri-
butions, this shows that the asymptotic optimal codelength for the symmetric Tardos
scheme is ` = (π2

2 + o(1))c2 ln(n/ε1). We show in Section 6 that for asymptotically
large c, we can actually prove soundness and completeness with this asymptotic code-
length, without any added assumptions. In the asymptotic case, our construction gives
the following parameters:

d`→
π2

2
, dz→ π, dδ → ∞, dα →

π
2
, r→ 1

2
, s→ ∞, g→ 2

π
.

Similar to the asymmetric case, we thus get a factor 2 improvement over Škorić et
al.’s best provable asymptotic codelength, and we achieve the asymptotic optimal
codelength which Škorić et al. only proved with the added assumption that the scores
behave like normal distributions. This also improves upon results from Nuida et al.
in [4], who showed that with certain discrete distribution functions F , one can prove
secureness for ` ≈ 5.35c2 ln(n/ε1) for large c. With our construction, we show a
codelength of `≈ 4.93c2 ln(n/ε1) is provably secure for large c.

3 Soundness

Here we will prove Theorem 3, i.e. prove the soundness property from Definition 1,
under the assumptions (S1) and (S2). We will closely follow the proof of soundness of
Blayer and Tassa of [2, Theorem 1.1]. We will first prove an upperbound on E

[
eαS j

]
,

with α = 1/(dα c), and then use this result to prove upper bounds on P[j ∈ σ(y)] for
innocent users j, and P[σ(ρ(X)) 6⊆C].

Lemma 1 Let dα and r be positive constants, with r > 1
2 , such that dδ ,dα and r

satisfy Equation (S1). Let j be an innocent user, and let S j be the user’s score in the
Tardos scheme from Subsection 2.1. Let α = 1/(dα c). Then

Ey,X ,p
[
eαS j

]
≤ e−rα2`. (4)

Optimal symmetric Tardos traitor tracing codes 9

Proof First we fill in S j = ∑`
i=1 S ji and use that S j does not depend on X j′i for j′ 6= j

to get

Ey,X ,p
[
eαS j

]
= Ey,X j ,p

[
`

∏
i=1

eαS ji

]
=

`

∏
i=1

Eyi,X ji,pi

[
eαS ji

]
.

Since S ji <
√

1/δ =
√

dδ c it follows that αS ji <
√

dδ/(dα
√

c). From (S1) we know
that
√

dδ/(dα
√

c)≤ h(r) for our choice of r, hence αS ji < h(r). From the definition
of h we know that ew ≤ 1+w+rw2 exactly when w≤ h(r). Using this with w = αS ji
we get

E
[
eαS ji

]
≤ E

[
1+αS ji + r(αS ji)

2]= 1+αE[S ji]+ rα2E[S2
ji].

We can easily calculate E[S ji] and E[S2
ji], as yi and X ji are independent for innocent

users j. As in [5, Lemmas 2 and 3], we obtain

E[S ji] = 0, E[S2
ji] = 1. (5)

So it follows that E
[
eαS ji

]
≤ 1+ rα2 ≤ erα2

, and Ey,X ,p
[
eαS j

]
≤ erα2`, which was to

be proven. ut

Proof (Proof of Theorem 3) We prove that the probability of accusing any particular
innocent user is at most ε1/n. Since there are at most n innocent users, the probability
of not accusing any innocent users is then at least (1− ε1/n)n ≥ 1− ε1, which then
proves the scheme is ε1-sound.

Since a user is accused if and only if his score S j exceeds Z, we need to prove
that P[S j > Z] ≤ ε1/n for innocent users j. First of all, we write α = 1/(dα c), and
we use the Markov inequality and Equation (4) from Lemma 1 to obtain

P[j ∈ σ(y)] = P[S j > Z] = P
[
eαS j > eαZ]≤ e−αZE

[
eαS j

]
≤ e−αZ+rα2`.

Since we want to prove that P[j ∈ σ(y)] ≤ ε1/n, the proof would be complete if
e−αZ+rα2` ≤ e−k ≤ ε1/n, i.e. if −αZ + rα2` ≤ −k. Filling in α = 1/(dα c),Z =
dzck, `= d`c2k, and dividing both sides by −k, we get

dz

dα
− rd`

d2
α
≥ 1.

This is exactly inequality (S2), which was assumed to hold. This completes the proof.
ut

Compared to the original proof in [2], this proof has barely changed. The only
difference is that now the scores are counted for all positions i, instead of only those
positions where yi = 1. However, since in the proof in [2] this number of positions
was bounded by `, the result remains the same. This explains why we can prove ε1-
soundness with the symmetric score function under the same assumptions (S1), (S2)
as in [2].

10 Thijs Laarhoven, Benne de Weger

4 Completeness

For the proof of Theorem 4, we will again closely follow the proof of Blayer and
Tassa of [2, Theorem 1.2], and make changes where necessary to incorporate the
symbol-symmetric score function. We first give a Lemma to bound the expectation
value of Ey,X ,p

[
e−βS

]
with β = s

√
δ/c and S = ∑ j∈C S j, and then use this Lemma to

prove completeness.

Lemma 2 Let s and g be positive constants such that dδ ,s and g satisfy (C1’). Let
β = s

√
δ/c, let C be a coalition of size c, and let S = ∑ j∈C S j be their total coalition

score in the Tardos scheme from Subsection 2.1. Then

Ey,X ,p

[
e−βS

]
≤ e−gβ`. (6)

The proof of Lemma 2 is quite lengthy and can be found in Appendix B. Using
this Lemma we can easily prove Theorem 4.

Proof (Proof of Theorem 4) We will prove that for a coalition of size c, with prob-
ability at least 1− ε2 the algorithm will accuse at least one of the colluders. Since a
coalition of size c can simulate a smaller coalition by disregarding some of its users,
this then proves that for any coalition of size at most c, the scheme will accuse at
least one of the colluders with probability at least 1−ε2. Note that if no colluders are
accused, then the score of each colluder is below Z. Hence if the total coalition score
S exceeds cZ, then at least one of the pirates is accused. So to prove ε2-soundness, it
suffices to prove that P[S < cZ]≤ ε2.

We first use the Markov inequality and Lemma 2 with β = s
√

δ/c > 0 to get

P[σ(y)∩C = /0]≤ P[S < cZ] = P
[
e−βS > e−βcZ

]
≤ eβcZEy,X ,p

[
e−βS

]
≤ eβcZ−gβ`.

Since we want to prove that P[S < cZ] ≤ e−ηk ≤ (ε1/n)η = ε2, the proof would
be complete if βcZ− gβ` ≤ −ηk. Filling in β = s

√
δ/c, ` = d`c2k,Z = dzck,δ =

1/(dδ c) and writing out both sides, we get

gd`−dz ≥ η
√

dδ
s2c

.

This is exactly inequality (C2), which was assumed to hold. This completes the proof.
ut

Compared to [2], we see that instead of using (C1), we now need that inequality
(C1’) holds. Comparing these two inequalities, we see that a term 1

π has changed to a
2
π , and a term 2

dδ π has changed to a 4
dδ π . The most important change is the 1

π changing

to a 2
π , since that term is the most dominant factor (and the only positive term) on the

left hand side of (C1’). By increasing this by a factor 2, we get that g≤ 2
π instead of

g≤ 1
π . Especially for large c, this will play an important role, and it will basically be

the reason why the required codelength can then be reduced by a factor 4, compared
to Blayer and Tassa’s analysis for the asymmetric scheme.

Optimal symmetric Tardos traitor tracing codes 11

While the other change (the 2
dδ π changing to 4

dδ π) does not have a big impact on
the optimal choice of parameters for large c, this change does influence the required
codelength for smaller c. Because of this change, we now subtract more from the left
hand side of (C1’), so that the value of g is bounded sharper from above. This means
that for finite values of c, we cannot reduce the codelength of Blayer and Tassa by a
factor 4, but only by a factor slightly less than 4.

Finally, after using (C1’) in the proof above, the analysis remained the same as in
[2]. So under the same assumption (C2) as in [2], we could also complete the proof
for the symmetric Tardos scheme.

5 Optimization

Similar to the analysis done by Blayer and Tassa in [2, Section 2.4], we also inves-
tigate the optimal choice of parameters such that all requirements are satisfied, and
d` is minimized. As only one of the inequalities has changed, and it changed only on
two positions, the formulas for the optimal values of dδ ,dα ,dz,d` in the following
Theorem are almost the same as in [2, Section 2.4.5].

Theorem 5 Let η ,c be given, and let r,s,g be fixed, satisfying r ∈ (1
2 ,∞),s ∈

(0,∞),g ∈ (0, 2
π). Then the optimal choice of dδ ,dα ,dz,d`, minimizing d` and sat-

isfying conditions (S1),(S2),(C1’),(C2), is given by:

d̂δ =

(
1

4
π −2g

(√
(h−1(s)s)2

c
+

16
π

(
2
π
−g
)
+

h−1(s)s√
c

))2

, (O1)

d̂α = max

√
d̂δ

h(r)
√

c
,

r
g
+

√√√√(r
g

)2

+
r
g

η

√
d̂δ
s2c

 , (O2)

d̂z =
gd̂2

α + rη
√

d̂δ
s2c

gd̂α − r
, (O3)

d̂` =
η
√

d̂δ
s2c + d̂z

g
. (O4)

So to find the optimal septuple (r̂, ŝ, ĝ, d̂δ , d̂α , d̂z, d̂`) for given c,η , satisfying
all requirements and minimizing d̂`, one only has to find the triple (r,s,g) with
r ∈ (1

2 ,∞),s ∈ (0,∞) and g ∈ (0, 2
π) that minimizes the right hand side of (O4).

Example An optimal solution to (S1),(S2),(C1’),(C2) for c≥ 2 and η = 1, minimiz-
ing d`, is given by

d` = 23.79, dz = 8.06, dδ = 28.31, dα = 4.58, r = 0.67, s = 1.07, g = 0.49.

This means that with these constants, we can prove soundness and completeness for
all c ≥ 2 and η ≤ 1, with a codelength of ` = 23.79c2 ln(n/ε1). Compared to the

12 Thijs Laarhoven, Benne de Weger

Fig1.pdf

Fig. 1 Optimal values of d`, for several values of c between 2 and 1000. The different lines correspond
to the cases η = 1,0.5,0.2,0.1,0.01 respectively, where higher values of η correspond to higher values of
d̂`.

original Tardos scheme, which had a codelength of ` = 100c2 dln(n/ε1)e, this gives
an improvement of a factor more than 4. Furthermore we can prove that this scheme
is ε1-sound and ε2-complete for any value of c≥ 2 and η ≤ 1, while Tardos’ original
proof only works for c≥ 2 and η ≤√c/4.

Example In practice, one usually has η � 1 instead of η = 1. For example, it could
be that ε2 = 1/2 is sufficient, while ε1 = 10−3 is desired and there are n = 106 users,
so that η ≈ 0.033. Then the optimizations give us d` ≈ 10.89 for c = 2. So with
this larger value of ε2, a codelength of `= 10.89c2 ln(n/ε1) is sufficient to prove the
soundness and completeness properties for any c ≥ 2. This is then already a factor
more than 9 improvement compared to the original Tardos scheme.

If we let c increase in inequalities (O1),(O2),(O3),(O4), i.e. if we only want prov-
able security for c≥ c0 for some c0 > 2, then one can easily see that the inequalities
become weaker and an even shorter codelength can be achieved. Figure 1 shows the
optimal values of d` against different values of c, for several values of η . One can see
that for large c, a codelength of ` < 6c2 ln(n/ε1) can be sufficient. In the next Section,
we will see that for large c, the optimal values of d` will converge to π2

2 ≈ 4.93.

6 Asymptotics

Here we show that with the symmetric Tardos construction, for c→ ∞ we can prove
secureness for d` = π2

2 +O
(
c−1/3

)
. We calculate the optimal first order error term

Optimal symmetric Tardos traitor tracing codes 13

explicitly, and also show explicitly the dependence on η , as the choice of η may de-
pend on the particular application. Note that at least η ≤ 1, but it may be considerably
smaller and it may depend on c as well.

Theorem 6 Let γ =
(2

3π
)2/3 ≈ 0.35577. The optimal asymptotic (for c→ ∞) value

for d`, and the accompanying values for dz,dδ , are

d` =
π2

2

(
1+
(

3γ +18γ
η

logc
(1+o(1))

)
c−1/3

)
, (7)

dz = π
(

1+
(

5
2

γ +6γ
η

logc
(1+o(1))

)
c−1/3

)
, (8)

dδ =
4
γ

(
1−3

η
logc

(1+o(1))
)

c1/3, (9)

and the choices for g,r,s leading to them are given by

g =
2
π

(
1−
(

1
2

γ +3γ
η

logc
(1+o(1))

)
c−1/3

)
, (10)

r =
1
2

(
1+
(

2γ−6γ
η

logc
(1+o(1))

)
c−1/3

)
, (11)

s = log
(

24
π2γ

η
logc

(1+o(1))c1/3
)
. (12)

We have optimized for d`, and one could get slightly better error
terms for dz or dδ . For example, optimizing for dz yields an optimal
value of π

(
1+
(

3γ ′+9γ ′ η
logc (1+o(1))

)
c−1/3

)
, for a suboptimal d` of

π2

2

(
1+
(

4γ ′+15γ ′ η
logc (1+o(1))

)
c−1/3

)
, where γ ′ = 2−1/3γ .

It is remarkable that the error terms for d` and dz scale with c−1/3, while Škorić et
al. found error terms scaling with c−1/2. It turns out that in [5] an error term in µ̃ was
not taken into account, and if one does do, their analysis for the binary case will also
yield error terms scaling with c−1/3. Also note that dδ (related to the cutoff) scales
with c1/3, i.e. the cutoff 1

dδ c scales with c−4/3 rather than with c−1 as one might have
guessed.

An immediate consequence of Theorem 6 is the following result, which shows
that asymptotically we will achieve codelengths of ` ≈ 4.93c2 ln(n/ε1), i.e. code-
lengths that are about 4.93% of Tardos’ original codelengths.

Corollary 1 For c→ ∞ the above construction gives an ε1-sound and ε2-complete
scheme with parameters

`→ π2

2
c2 ln(n/ε1), Z→ πc ln(n/ε1), δ → 0.

This proves that our symmetric Tardos construction is asymptotically optimal,
since for large c we achieve the optimal codelength of `= (π2 +o(1))c2 ln(n/ε1).

14 Thijs Laarhoven, Benne de Weger

Remark In the proof of Theorem 6, we use that r can be taken in the neighborhood of
1
2 to get the final result, d` = π2

2 +O(c−1/3+γ). In [5] however, no such variable r was
used, as it was simply fixed at 1. If they had taken r as a parameter in their analysis
and had taken it close to 1

2 in the asymptotic case, then they would have obtained the
same asymptotic results as we did above, but still with different first order terms.

Acknowledgements The authors would like to thank Boris Škorić, Jeroen Doumen and Peter Roelse for
useful discussions and valuable comments.

A Integral codelengths

One detail we have not taken care of and which is often ”swept under the carpet” in other literature, is
that the codelength ` by definition has to be integral. In the construction of the Tardos scheme however,
we said we take ` = d`c2 ln(n/ε1), while ln(n/ε1) and d` may not be integral. To solve the problem of
non-integral codelengths, Tardos rounded up ln(n/ε1) and took d` = 100 in his original scheme. Blayer
and Tassa also rounded up ln(n/ε1) and took d` = 85, presumably also to guarantee that ` is integral3.
However, rounding up d` and ln(n/ε1) could drastically increase the codelength. For example, suppose
n = 106, ε1 = ε2 = 0.01, and c = 25. Then η = 0.25 and ln(n/ε1) ≈ 18.42, and numerical optimizations
give d` ≈ 8.18. Without rounding we would get a codelength of ` ≈ 94155, while with rounding we get
`′ = 106875. So then the codelength `′ is more than 13.5% higher than `, only because we rounded up
both ln(n/ε1) and d`.

Instead of rounding up inbetween, rounding up the entire codelength to `′ = dd`c2 ln(n/ε1)e makes
more sense. The codelength is then increased by less than 1 symbol, so we hardly notice the difference
in the codelength. However, the proofs we give in Section 3 and 4 are based on ` = d`c2 ln(n/ε1), which
corresponds to using d` = `/(c2 ln(n/ε1)). If we take `′ = d`e, then we get d′` = d`e/(c2 ln(n/ε1)) > d`
(for ` /∈ N), so that with the same parameters Z and δ we may not be able to prove security anymore.
In particular, equation (S2) might not be satisfied if d` is increased, since (S2) implies that 4rd` ≤ d2

z .
Increasing the left hand side may violate this bound, if we do not also increase dz.

The following Theorem takes care of this minor problem, by showing that if we can find a solution to
(S1), (S2), (C1’), (C2) with a fractional codelength `, then we can also find a solution to these inequalities
with the integral codelength d`e. In particular, we show which scheme parameters `, Z and δ one could
take to achieve this result.

Theorem 7 Let the Tardos scheme be constructed as in Subsection 2.1, and let (d`,dz,dδ ,dα ,r,s,g) be a
septuple satisfying conditions (S1), (S2), (C1’), (C2) giving scheme parameters `0 = d`c2 ln(n/ε1),Z0 =
dzc ln(n/ε1) and δ0 = 1/(dδ c). Then the Tardos scheme from Subsection 2.1 with parameters

`= d`0e, Z = Z0 +
g
c
(d`0e− `0) , δ = δ0 (13)

is ε1-sound and ε2-complete.

Proof Let us write ω = d`(d`0e−`0)/`0. We prove that if the equations hold for (d`,dz,dδ ,dα ,r,s,g), then

they also hold for (d′`,d
′
z,dδ ,d′α ,r,s,g), where d′` = d` +ω,d′z = dz + gω,d′α = (d′z +

√
(d′z)2−4rd′`)/2.

Since for this set of parameters we get `,Z and δ as in (13), the result then follows.
First note that since dδ ,s and g did not change, both sides of inequality (C1’) remain the same and

this inequality is still satisfied. For inequality (C2), note that both sides also remained the same, since
gd′`−d′z = g(d`+ω)− (dz +gω) = gd`−dz. For (S2), we rewrite this inequality as a quadratic inequality
in dα :

d2
α +(−dz)dα + rd` ≤ 0. (14)

3 Numerical optimizations show that even a parameter set with d` ≈ 81.25 exists that satisfies all re-
quirements of Blayer and Tassa.

Optimal symmetric Tardos traitor tracing codes 15

This inequality is satisfied if dα lies between the two roots of d2
α +(−dz)dα + rd` = 0, which therefore

must exist. These roots exist if and only if (d′z)
2−4rd′` ≥ 0. Since we know that d2

z −4rd` ≥ 0 the inequality
follows if

(d′z)
2−4rd′` = (d2

z −4rd`)+(2gdz +g2ω2−4r)≥ d2
z −4rd` ≥ 0.

From (S2) and (C2) we know that g(d2
z)≥ g(4rd`)≥ 4rdz, i.e. gdz ≥ 4r. So it follows that 2gdz +g2ω2 ≥

4r, which proves the second inequality. The third inequality then follows from (S2).
Finally for (S1), we prove that d′α ≥ dα , while the right hand side remains the same, so that this

inequality is still satisfied. Note that dα is also at most the rightmost root to (14), so d′α − dα is bounded
by

d′α −dα ≥
d′z +

√
(d′z)2−4rd′`

2
− dz +

√
d2

z −4rd`
2

≥ gω
2
≥ 0.

Here the second inequality follows from earlier calculations that (d′z)
2−4rd′` ≥ d2

z −4rd`. So this choice
of d′α is at least as high as dα , so inequality (S1) is satisfied. This completes the proof. ut

B Proof of Lemma 2

For proving Lemma 2 we will again closely follow the analysis of Blayer and Tassa, and make changes
where necessary.

First, we write the total accusation sum of all colluders together as follows:

S =
`

∑
i=1

c

∑
j∈C

S ji =
`

∑
i=1

yi

(
xiqi−

c− xi

qi

)
+

`

∑
i=1

(1− yi)

(
c− xi

qi
− xiqi

)
.

Here xi is the number of ones on the ith positions of all colluders, yi is the output symbol of the pirates on
position i, and we introduced the notation qi =

√
(1− pi)/pi. Following the analysis from e.g. Blayer and

Tassa, and Tardos, but using that Si = (1−yi)
(

c−xi
qi
− xiqi

)
for positions i where yi = 0 (instead of Si = 0,

as with the asymmetric score function), we can bound the expectation value by

Ey,X ,p

[
e−βS

]
≤
(

c

∑
x=0

(
c
x

)
Mx

)`

, (15)

where

Mx =

E0,x if x = 0,
E1,x if x = c,
max(E0,x,E1,x) otherwise,

and, for some random variable p distributed according to F ,

E0,x = Ep

[
px(1− p)c−xe−β

(
c−x

q −xq
)]

,

E1,x = Ep

[
px(1− p)c−xe−β

(
xq− c−x

q

)]
.

Now, using β = s
√

δ/c, we bound the exponents in E0,x and E1,x as follows.

−s =
−βc√

δ
≤−βcq≤−β

(
xq− c− x

q

)
≤ βc

q
≤ βc√

δ
= s.

16 Thijs Laarhoven, Benne de Weger

So |β (xq− (c−x)/q)| ≤ s for our choice of β . So we can use the inequality ew ≤ 1+w+h−1(s)w2 which
holds for all w≤ s, with w =±β (xq− (c− x)/q), to obtain

E0,x ≤ Ep

[
px(1− p)c−x

(
1+β

(
xq− c− x

q

)
+h−1(s)β 2

(
xq− c− x

q

)2
)]

,

E1,x ≤ Ep

[
px(1− p)c−x

(
1−β

(
xq− c− x

q

)
+h−1(s)β 2

(
xq− c− x

q

)2
)]

.

Introducing more notation, this can be rewritten to

E0,x ≤ F0,x +βF1,x +h−1(s)β 2F2,x,

E1,x ≤ F0,x−βF1,x +h−1(s)β 2F2,x,

where

F0,x = Ep
[
px(1− p)c−x] ,

F1,x = Ep

[
px(1− p)c−x

(
xq− c− x

q

)]
,

F2,x = Ep

[
px(1− p)c−x

(
xq− c− x

q

)2
]
.

We first calculate F1,x explicitly. Writing out the expectation value and using the definition of f (p) from
(1), we get

F1,x =
1

π−4δ ′

∫ 1−δ

δ
px(1− p)c−x

(
x
p
− c− x

1− p

)
d p

The primitive of the integrand is given by I(p) = px(1− p)c−x, so we get

F1,x =
I (1−δ)− I(δ)

π−4δ ′
=

(1−δ)xδ c−x−δ x(1−δ)c−x

π−4δ ′
. (16)

For 0 < x < c, we bound F1,x from above and below as

−δ x(1−δ)c−x

π−4δ ′
≤ F1,x ≤

(1−δ)xδ c−x

π−4δ ′
.

Using these bounds for Mx, with 0 < x < c, we get

Mx ≤ F0,x +β
max(δ x(1−δ)c−x,(1−δ)xδ c−x)

π−4δ ′
+h−1(s)β 2F2,x.

Since δ < 1− δ , the maximum of the two terms is the first term when 0 < x ≤ c/2, and it is the second
term when c/2 < x < c. Note that this bound is different from the one of Blayer and Tassa, since in their
analysis they do not have this maximum over two terms, but just the first of these two terms. We cannot
prove the same upper bound as Blayer and Tassa, and therefore our bound for Mx,0 < x < c, is slightly
weaker than Blayer and Tassa’s.

For the positions where the marking assumption applies, i.e. x = 0 and x = c, we do not use the bounds
on F1,x, but use the exact formula from (16) to obtain

M0 ≤ F0,0−β
(1−δ)c−δ c

π−4δ ′
+h−1(s)β 2F2,0,

Mc ≤ F0,c−β
(1−δ)c−δ c

π−4δ ′
+h−1(s)β 2F2,c.

The value of Mc is the same as that of Blayer and Tassa, but whereas Blayer and Tassa had M0 = F0, we
get a lower upper bound on M0. This is essentially the reason why with the symmetric score function we
get shorter codelengths than Blayer and Tassa.

Optimal symmetric Tardos traitor tracing codes 17

Substituting the bounds on Mx in the summation over Mx from (15) gives us

c

∑
x=0

(
c
x

)
Mx ≤M0 +Mc +

c−1

∑
x=1

(
c
x

)
Mx

≤
(

F0,0−β
(1−δ)c−δ c

π−4δ ′
+h−1(s)β 2F2,0

)

+

(
F0,c−β

(1−δ)c−δ c

π−4δ ′
+h−1(s)β 2F2,c

)

+
bc/2c
∑
x=1

(
c
x

)(
F0,x +β

δ x(1−δ)c−x

π−4δ ′
+h−1(s)β 2F2,x

)

+
c−1

∑
x=bc/2c+1

(
c
x

)(
F0,x +β

(1−δ)xδ c−x

π−4δ ′
+h−1(s)β 2F2,x

)
.

Gathering all terms with F0,x and F2,x, and using the substitution x′= c−x for the summation over dc/2e−1
terms, we get

c

∑
x=0

(
c
x

)
Mx ≤

c

∑
x=0

(
c
x

)
F0,x−β

2(1−δ)c

π−4δ ′
+h−1(s)β 2

c

∑
x=0

(
c
x

)
F2,x

+
β

π−4δ ′

(
δ c +

bc/2c
∑
x=1

(
c
x

)
δ x(1−δ)c−x

)

+
β

π−4δ ′

(
δ c +

dc/2e−1

∑
x′=1

(
c
x′

)
δ x′ (1−δ)c−x′

)
. (17)

For the summation over F2,x, let us define a sequence of random variables {Ti}c
i=1 according to Ti = q

with probability p and Ti = −1/q with probability 1− p. Similar to the inequalities from (5), we get that
Ep[Ti] = 0 and Ep[T 2

i] = 1. Also, since Ti and Tj are independent for i 6= j, we have that Ep[TiTj] = 0 for
i 6= j. Therefore we can write

Ep

(

c

∑
i=1

Ti

)2

=

c

∑
i=1

Ep
[
T 2

i
]
+∑

i 6= j
Ep
[
TiTj

]
= c.

But writing out the definition of the expected value, we see that the left hand side is actually the same as
the summation over F2,x, so that we get

Ep

(

c

∑
i=1

Ti

)2

=

c

∑
x=0

(
c
x

)
px(1− p)c−x

(
xq− c− x

q

)2

=
c

∑
x=0

(
c
x

)
F2,x = c.

Also we trivially have that

c

∑
x=0

(
c
x

)
F0,x =

c

∑
x=0

(
c
x

)
Ep
[
px(1− p)c−x]= Ep

[
c

∑
x=0

(
c
x

)
px(1− p)c−x

]
= 1.

For the summation over bc/2c terms we use the following upper bound, which then also holds for the
summation over dc/2e−1 terms:

δ c +
bc/2c
∑
x=1

(
c
x

)
δ x(1−δ)c−x ≤

c

∑
x=1

(
c
x

)
δ x(1−δ)c−x = 1− (1−δ)c ≤ δc.

Note that this first inequality is quite sharp. In most cases δ � 1−δ , so that the summation is dominated
by the terms with low values of x. Adding the terms with bc/2c< x < c (i.e. terms with high powers of δ)
to the summation has an almost negligible effect on the value of the summation.

18 Thijs Laarhoven, Benne de Weger

Now applying the previous results to (17), and using (1−δ)c ≥ 1−δc, which holds for all c, we get

c

∑
x=0

(
c
x

)
Mx ≤ 1−β

2−4cδ
π−4δ ′

+h−1(s)β 2c.

We want to prove that, for some g > 0,

c

∑
x=0

(
c
x

)
Mx ≤ 1−β

2−4cδ
π−4δ ′

+h−1(s)β 2c≤ 1−gβ ≤ e−gβ . (18)

Filling in β = s
√

δ/c and δ = 1/(dδ c) and writing out the second inequality, this leads to the requirement
that

2− 4
dδ

π
− h−1(s)s√

dδ c
≥ g.

This is exactly inequality (C1’), which is assumed to hold. Combining the results from Equations (18) and
(17) gives us

Ey,X ,p

[
e−βS

]
≤
(

c

∑
x=0

(
c
x

)
Mx

)`

≤ e−gβ`.

This completes the proof. ut

C Proof of Theorem 6

We introduce parameters Kg,Kr,Ks, a priori depending on c, to enable us to write

g =
2
π
−Kgc−1/3, h(r) = Krc−1/3,

1
sh−1(s)

= Ksc−1/3.

Clearly Kg,Kr,Ks are positive, and we will assume that Kg and Kr are O(1) for c→ ∞. This assumption
will be validated later on. Note that we do not demand this for Ks (and indeed, it will turn out that Ks→∞).

Note that r = h−1(Krc−1/3) =
1
2
+

1
6

Krc−1/3 +O
(

c−2/3
)

, so that, with for convenience R =
r
g

, we

have

R =
π
4
+

(
π2

8
Kg +

π
12

Kr

)
c−1/3 +O

(
c−2/3

)
. (19)

Next, for convenience we put D =

√
dδ
c

, and then we have from (O1) that D = D0c−1/3, where

D0 =
1

2KgKs

(
1+

√
1+

16
π

KgK2
s

)
.

Note that D0 is a decreasing function of Ks, with limiting value
2√
π

1√
Kg

.

From (O2) we see that dα = max
{

D
h(r)

,x0

}
, where x0 = R+

√
R2 +RD

η
s

. Note that

x0 = 2R+
1
2

D
η
s
+O

(
c−2/3

)
, (20)

Optimal symmetric Tardos traitor tracing codes 19

where we used that
η
s
= o(1). Note that (O3) and (O4) imply d` =

d2
α +dα D

η
s

g(dα −R)
, and that for x > R

we have
x2 + xD

η
s

x−R
≥ 2x0 +D

η
s

, with equality if and only if x = x0. So minimizing d` comes down to

minimizing
2x0 +D

η
s

g
under the constraint dα = x0. Then dz = 2x0, so that by (19) and (20) we get

dz = π +Z0c−1/3 +O(c−2/3), where Z0 =
π2

2
Kg +

π
3

Kr +D0
η
s
,

and for d` we obtain

d` =
π2

2
+L0c−1/3 +O(c−2/3), where L0 =

π3

2
Kg +

π2

6
Kr +πD0

η
s
. (21)

To find the main terms in the optimal values for d`,dz,dδ , for the moment we neglect error terms. The

fact that dα = x0 implies that
D

h(r)
≤ x0, and this is asymptotically equivalent to

D0

Kr
≤ π

2
. This can be

expanded into 1+

√
1+

16
π

KgK2
s ≤ πKgKrKs, and this leads to (π3KgK2

r −16)Ks ≥ 2π2Kr , which actually

is two conditions:

KgK2
r >

16
π3 = 0.51602 . . . , Ks ≥

2π2Kr

π3KgK2
r −16

. (22)

This shows that it is impossible to choose both Kg and Kr close to 0, and that it is certainly possible to

choose them O(1) as c→ ∞. Note that optimizing
η
s

implies taking s as large as possible, but this means
taking Ks as small as possible, which is limited by the above condition. Indeed, in minimizing L0 we would
like to minimize Kg and Kr , leading to growing Ks, while also s preferably keeps growing. We will see that
this is possible.

In optimizing L0, to find the main term we also neglect for the moment the term πD0
η
s

, as it also

tends to 0. So we optimize L′0 =
π3

2
Kg+

π2

6
Kr under the constraint KgK2

r >
16
π3 . The minimal value for L′0

is reached for Kg →
γ
π
≈ 0.11325,Kr → 6γ = 2.1346, where γ =

(
2

3π

)2/3

≈ 0.35577 is a convenience

constant. In this case KgK2
r →

16
π3 , so Ks → ∞, and D0 →

2√
π

1√
Kg
→ 3πγ ≈ 3.3531. It follows that

L′0→
3π2

2
γ ≈ 5.2670.

Let us next be more careful, and not throw away the term πD0
η
s

and the error terms. L0 as in (21) is
a priori a function of Kg,Kr and s. We can take for Ks its exact optimal value according to (22), viz.

Ks =
2π2Kr

π3KgK2
r −16

, (23)

so that D0 =
π
2

Kr . Note that (23) allows us to eliminate from L0 the variable Kg. This yields

L0 =
π2

6

(
1+3

η
s

)
Kr +π2 1

KrKs
+8

1
K2

r
.

We now minimize L0 by setting the partial derivatives w.r.t. s and Kr to 0. Indeed,
∂L0

∂Kr
=

π2

6

(
1+3

η
s

)
−π2 1

K2
r Ks
−16

1
K3

r
, and this being 0 implies

π2

6

(
1+3

η
s

)
K2

r −16
1

Kr
= π2 1

Ks
. (24)

20 Thijs Laarhoven, Benne de Weger

Further, by
1

K2
s

dKs

ds
= − (s−1)es +1

s2 c−1/3 we find
∂L0

∂ s
= −π2

2
η
s2 Kr + π2 1

Kr

(s−1)es +1
s2 c−1/3, and

this being 0 implies

K2
r =

2
η
((s−1)es +1)c−1/3. (25)

From (24) and (25) we eliminate Kr , and thus obtain an equation in s only, viz.

(
1+3

η
s

) 1
η3/2 ((s−1)es +1)3/2− 24

√
2

π2 c1/2 = 3
1

η1/2
es−1− s

s
((s−1)es +1)1/2.

The first term on the left hand side is
(

ses

η

)3/2(
1+O

(
1
s

))
, and the right hand side is

3(es)3/2

(sη)1/2

(
1+O

(
1
s

))
, and as η < 1 and s→ ∞ the right hand side clearly is smaller, so vanishes in

the O
(

1
s

)
. So we find

(
ses

η

)3/2(
1+O

(
1
s

))
=

24
√

2
π2 c1/2, and this yields

ses =

(
8

π2γ
η +O

(
1

logc

))
c1/3.

In turn this implies

s =
1
3

logc− log logc+ logη +O(1),
1
s
=

3
logc

(
1+O

(
log logc

logc

))
, (26)

and

Ks =
π2γ
72η

log2 c
(

1+O
(

1
logc

))
. (27)

Indeed we find that Ks and s both tend to ∞.
To get the proper value for Kr we turn to (24), and introduce θ such that Kr = 6γ +θ , so that θ will

tend to 0. Then (24) becomes a cubic equation in θ :

θ 3 +18γθ 2 +

108γ2− 6(

1+3
η
s

)
Ks

θ +

288
π2

η
s

1+3
η
s

− 36γ(
1+3

η
s

)
Ks

= 0. (28)

When s→ ∞ and Ks → ∞, this ultimately becomes θ
(
θ 2 +18γθ +108γ2) = 0, with the quadratic term

being positive definite, showing that (28) for finite large s has exactly one real solution, which will be close
to 0. For this solution we have, using (26), (27),

(
108γ2 +O

(
1

log2 c

))
θ +O(θ 2) =−288

π2
η
s

(
1+O

(
1

logc

))
,

hence

Kr = 6γ
(

1− η
s

(
1+O

(
1

logc

)))
, Kg =

γ
π

(
1+2

η
s

(
1+O

(
1

logc

)))
.

Putting everything together, using (26), we find

L0 =
3
2

π2γ
(

1+6η
1

logc
(1+o(1))

)
, Z0 =

1
2

πγ
(

5+12η
1

logc
(1+o(1))

)
.

The result now easily follows. ut

Optimal symmetric Tardos traitor tracing codes 21

References

1. Amiri, E., Tardos, G.: High rate fingerprinting codes and the fingerprinting capacity. Proceedings of
the twentieth Annual ACM-SIAM Symposium on Discrete Algorithms pp. 336–345 (2009). URL
http://portal.acm.org/citation.cfm?id=1496770.1496808

2. Blayer, O., Tassa, T.: Improved versions of Tardos fingerprinting scheme. Designs, Codes and Cryptog-
raphy 48, 79–103 (2008). URL http://dx.doi.org/10.1007/s10623-008-9200-z. 10.1007/s10623-008-
9200-z

3. Huang, Y.W., Moulin, P.: Saddle-point solution of the fingerprinting capacity game under the marking
assumption. Proceedings of the 2009 IEEE international conference on Symposium on Information
Theory 4, 2256–2260 (2009). URL http://portal.acm.org/citation.cfm?id=1700967.1700985

4. Nuida, K., Fujitsu, S., Hagiwara, M., Kitagawa, T., Watanabe, H., Ogawa, K., Imai, H.: An improve-
ment of discrete Tardos fingerprinting codes. Designs, Codes and Cryptography 52, 339–362 (2009).
URL http://dx.doi.org/10.1007/s10623-009-9285-z. 10.1007/s10623-009-9285-z

5. Skoric, B., Katzenbeisser, S., Celik, M.: Symmetric Tardos fingerprinting codes for arbitrary alphabet
sizes. Designs, Codes and Cryptography 46, 137–166 (2008). URL http://dx.doi.org/10.1007/s10623-
007-9142-x. 10.1007/s10623-007-9142-x

6. Skoric, B., Vladimirova, T., Celik, M., Talstra, J.: Tardos fingerprinting is better than we thought.
Information Theory, IEEE Transactions on 54(8), 3663 –3676 (2008). DOI 10.1109/TIT.2008.926307

7. Tardos, G.: Optimal probabilistic fingerprint codes. In: Proceedings of the thirty-fifth annual ACM
symposium on Theory of computing, STOC ’03, pp. 116–125. ACM, New York, NY, USA (2003).
DOI http://doi.acm.org/10.1145/780542.780561. URL http://doi.acm.org/10.1145/780542.780561

Bibliography

[AB08] Prasanth Anthapadmanabhan and Alexander Barg. Randomized Frameproof Codes:
Fingerprinting Plus Validation Minus Tracing. CoRR, abs/0802.3419, 2008.

[ABD06] Prasanth Anthapadmanabhan, Alexander Barg, and Ilya Dumer. On the Fin-
gerprinting Capacity Under the Marking Assumption. CoRR, abs/cs/0612073,
2006.

[AFS01] Noga Alon, Eldar Fischer, and Mario Szegedy. Parent-Identifying Codes. Journal
of Combinatorial Theory, Series A, 95(2):349–359, 2001.

[AS04] Noga Alon and Uri Stav. New Bounds on Parent-Identifying Codes: The Case of
Multiple Parents. Comb. Probab. Comput., 13:795–807, 2004.

[AT09] Ehsan Amiri and Gabor Tardos. High rate fingerprinting codes and the fingerprinting
capacity. Proceedings of the twentieth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 336–345, 2009.

[BBK03] Alexander Barg, George Blakley, and Grigory Kabatiansky. Digital fingerprinting
codes: Problem statements, constructions, identification of traitors. IEEE Trans.
Inform. Theory, 49:852–865, 2003.

[BCE+01] Alexander Barg, Gerard Cohen, Sylvia Encheva, Grigory Kabatiansky, and Gilles
Zemor. A hypergraph approach to the identifying parent property: the case of
multiple parents. SIAM J. Disc. Math, 14:423–431, 2001.

[BEN07] Simon Blackburn, Tuvi Etzion, and Siaw-Lynn Ng. Prolific Codes with the Identifi-
able Parent Property. Cryptology ePrint Archive, Report 2007/276, 2007.

[BEN09] Simon Blackburn, Tuvi Etzion, and Siaw-Lynn Ng. Traceability Codes. Cryptology
ePrint Archive, Report 2009/046, 2009.

[BF99] Dan Boneh and Matthew Franklin. An Efficient Public Key Traitor Tracing Scheme.
Advances in Cryptology - CRYPTO ’99, 1666:783–783, 1999.

[BK03] Alexander Barg and Grigory Kabatiansky. A Class of IPP Codes with Efficient
Identification. Journal of Complexity, 20:137–147, 2003.

[Bla03a] Simon Blackburn. An Upper Bound on the Size of a Code with the k-Identifiable
Parent Property. J. Comb. Theory Ser. A, 102:179–185, 2003.

[Bla03b] Simon Blackburn. Combinatorial schemes for protecting digital content. Surveys in
Combinatorics 2003, pages 43–78, 2003.

[Bla03c] Simon Blackburn. Frameproof codes. SIAM Journal on Discrete Mathematics,
16(3):499–510, 2003.

165

[BN08] Dan Boneh and Moni Naor. Traitor tracing with constant size ciphertext. Proceedings
of the 15th ACM conference on Computer and communications security, pages 501–
510, 2008.

[BPS00] Omer Berkman, Michal Parnas, and Jiri Sgall. Efficient dynamic traitor tracing.
Proceedings of the eleventh annual ACM-SIAM symposium on Discrete algorithms,
pages 586–595, 2000.

[BS98] Dan Boneh and James Shaw. Collusion-Secure Fingerprinting for Digital Data.
IEEE Transactions on Information Theory, pages 452–465, 1998.

[BS11] Dion Boesten and Boris Skoric. Asymptotic fingerprinting capacity for non-binary
alphabets. arXiv.org Preprint, 2011.

[BT08] Oded Blayer and Tamir Tassa. Improved versions of Tardos’ fingerprinting scheme.
Des. Codes Cryptography, 48:79–103, 2008.

[CE00] Gerard Cohen and Sylvia Encheva. Efficient constructions of frameproof codes.
Electronics Letters, 36(22):1840–1842, 2000.

[CFNP00] Benny Chor, Amos Fiat, Moni Naor, and Benny Pinkas. Tracing traitors. IEEE
Transactions on Information Theory, 46(3):893–910, 2000.

[CKLS96] Ingemar Cox, Joe Kilian, Tom Leighton, and Talal Shamoon. A secure, robust
watermark for multimedia. Information Hiding - Lecture Notes in Computer Science,
1174:185–206, 1996.

[CXFF09] Ana Charpentier, Fuchon Xie, Caroline Fontaine, and Teddy Furon. Expectation
Maximization of Tardos probabilistic fingerprinting code. Preprint, 2009.

[EC01] Sylvia Encheva and Gerard Cohen. Some new p-ary two-secure frameproof codes.
Applied Mathematics Letters, 14(2):177–182, 2001.

[EC02] Sylvia Encheva and Gerard Cohen. Frameproof codes against limited coalitions of
pirates. Theoretical Computer Science, 273(2):295–304, 2002.

[FGC08] Teddy Furon, Arnaud Guyader, and Frederic Cerou. On the Design and Optimization
of Tardos Probabilistic Fingerprinting Codes. Information Hiding - Lecture Notes
in Computer Science, 5284:341–356, 2008.

[FN94] Amos Fiat and Moni Naor. Broadcast encryption. Proceedings of the 13th annual
international cryptology conference on Advances in cryptology, pages 480–491, 1994.

[FPF09] Teddy Furon and Luis Perez-Freire. EM Decoding of Tardos Traitor Tracing Codes.
Proceedings of the 11th ACM workshop on Multimedia and security, pages 99–106,
2009.

[FT01] Amos Fiat and Tamir Tassa. Dynamic Traitor Tracing. Journal of Cryptology,
14:211–223, 2001.

[HM09a] Yen-Wei Huang and Pierre Moulin. Capacity-achieving Fingerprint Decoding.
Information Forensics and Security, 2009. WIFS 2009. First IEEE International
Workshop on, pages 51–55, 2009.

[HM09b] Yen-Wei Huang and Pierre Moulin. Saddle-point Solution of the Fingerprinting
Capacity game under the Marking Assumption. Proceedings of the 2009 IEEE
international conference on Symposium on Information Theory, 4:2256–2260, 2009.

166

[HVLLT98] Henk Hollmann, Jack Van Lint, Jean-Paul Linnartz, and Ludo Tolhuizen. On Codes
with the Identifiable Parent Property. Journal of Combinatorial Theory, Series A,
82(2):121–133, 1998.

[JB07] Hongxia Jin and Mario Blaum. Combinatorial Properties for Traceability Codes
using Error Correcting Codes. IEEE Trans. Inform. Theory, 53:804–808, 2007.

[JKL09] Pascal Junod, Alexandre Karlov, and Arjen Lenstra. Improving the Boneh-Franklin
Traitor Tracing Scheme. Proceedings of the 12th International Conference on Practice
and Theory in Public Key Cryptography: PKC ’09, pages 88–104, 2009.

[JLN04] Hongxia Jin, Jeffery Lotspiech, and Stefan Nusser. Traitor Tracing for prerecorded
and recordable media. Proceedings of the 4th ACM workshop on Digital rights
management, pages 83–90, 2004.

[Ker10] Andrew Ker. The Square Root Law in Stegosystems with Imperfect Information.
Proc. 12th Information Hiding Workshop - Lecture Notes in Computer Science,
6387:145–160, 2010.

[KSCS07] Stefan Katzenbeisser, Boris Skoric, Mehmet Celik, and Ahmad-Reza Sadeghi. Com-
bining Tardos Fingerprinting Codes and Fingercasting. Information Hiding - Lecture
Notes in Computer Science, 4567:294–310, 2007.

[LDW11] Thijs Laarhoven and Benne De Weger. Optimal symmetric Tardos fingerprinting
codes. Preprint, 2011+.

[NFH+09] Koji Nuida, Satoshi Fujitsu, Manabu Hagiwara, Takashi Kitagawa, Hajime Watan-
abe, Kazuto Ogawa, and Hideki Imai. An Improvement of Discrete Tardos Finger-
printing Codes. Designs, Codes and Cryptography, 52:339–362, 2009.

[NNL01] Dalit Naor, Moni Naor, and Jeffrey Lotspiech. Revocation and Tracing Schemes
for Stateless Receivers. Proceedings of the 21st Annual International Cryptology
Conference on Advances in Cryptology, pages 41–62, 2001.

[Pat07] Maura Paterson. Sequential and Dynamic Frameproof Codes. Des. Codes Cryptog-
raphy, 42:317–326, 2007.

[PSS03] Chris Peikert, Abhi Shelat, and Adam Smith. Lower Bounds for Collusion-secure
Fingerprinting. Proceedings of the fourteenth annual ACM-SIAM symposium on
Discrete algorithms, pages 472–479, 2003.

[Ron05] Tor Roneid. Collusion-Secure Fingerprinting - A Simulation of the Boneh and Shaw
Scheme. Master’s Thesis, 2005.

[Sch03] Hans Georg Schaathun. Fighting Two Pirates. Proceedings of the 15th International
Conference on Applied Algebra, Algebraic Algorithms and Error-Correcting Codes,
pages 71–78, 2003.

[Sch04] Hans Georg Schaathun. Binary Collusion-secure Codes: Comparison and Improve-
ments. Reports in Informatics, University of Bergen, Norway, 2004.

[Sch06] Hans Georg Schaathun. The Boneh-Shaw Fingerprinting Scheme is better than we
thought. IEEE Transactions on Information Forensics and Security, 1:248–255,
2006.

[Sch08] Hans Georg Schaathun. On the Assumption of Equal Contributions in Fingerprinting.
IEEE Transactions on Information Forensics and Security, 3:569–572, 2008.

167

[SDF02] Francesc Sebe and Josep Domingo-Ferrer. Short 3-Secure Fingerprinting Codes for
Copyright Protection. Proceedings of the 7th Australian Conference on Information
Security and Privacy, pages 316–327, 2002.

[SDF03] Francesc Sebe and Josep Domingo-Ferrer. Collusion-Secure and Cost-Effective
Detection of Unlawful Multimedia Redistribution. IEEE Transactions on Systems,
Man and Cybernetics, Part C, 33:382–389, 2003.

[SKC08] Boris Skoric, Stefan Katzenbeisser, and Mehmet Celik. Symmetric Tardos Finger-
printing Codes for Arbitrary Alphabet Sizes. Des. Codes Cryptography, 46(2):137–
166, 2008.

[SKSC09] Boris Skoric, Stefan Katzenbeisser, Hans Georg Schaathun, and Mehmet Celik.
Tardos Fingerprinting Codes in the Combined Digit Model. Information Forensics
and Security, 2009. WIFS 2009. First IEEE International Workshop on, pages
41–45, 2009.

[SNW03] Reihaneh Safavi-Naini and Yejing Wang. Sequential Traitor Tracing. Proceedings of
the 20th Annual International Cryptology Conference on Advances in Cryptology,
pages 316–332, 2003.

[SS01] Palash Sarkar and Douglas Stinson. Frameproof and IPP Codes. Progress in
Cryptology - INDOCRYPT 2001, 2247:117–126, 2001.

[SS10] Antonino Simone and Boris Skoric. Accusation Probabilities in Tardos Codes: the
Gaussian Approximation is better than we thought. Cryptology ePrint Archive,
Report 2010/472, 2010.

[SS11] Antonino Simone and Boris Skoric. Asymptotically false-positive-maximizing attack
on non-binary Tardos codes. arXiv.org Preprint, 2011.

[SSW01] Jessica Staddon, Douglas Stinson, and Ruizhong Wei. Combinatorial Properties of
Frameproof and Traceability Codes. IEEE Transactions on Information Theory,
47:1042–1049, 2001.

[STW00] Douglas Stinson, Tran Van Trung, and Ruizhong Wei. Secure Frameproof Codes,
Key Distribution Patterns, Group Testing Algorithms and Related Structures.
Journal of Statistical Planning and Inference, 86:595–617, 2000.

[SVCT06] Boris Skoric, Tatiana Vladimirova, Mehmet Celik, and Joop Talstra. Tardos
Fingerprinting is better than we thought. CoRR, abs/cs/0607131, 2006.

[SW98] Douglas Stinson and Ruizhong Wei. Combinatorial Properties and Constructions of
Traceability Schemes and Frameproof Codes. SIAM Journal on Discrete Mathemat-
ics, 11(1):41–53, 1998.

[SZ08] Douglas Stinson and Gregory Zaverucha. Some Improved Bounds for Secure Frame-
proof Codes and Related Separating Hash Families. IEEE Transactions on Infor-
mation Theory, 54:2508–2514, 2008.

[Tar03] Gabor Tardos. Optimal Probabilistic Fingerprint Codes. STOC ’03: Proceedings of
the thirty-fifth annual ACM symposium on Theory of computing, pages 116–125,
2003.

[Tar09] Gabor Tardos. Tracing Traitors - Fingerprinting Digital Documents. Workshop at
the Eindhoven University of Technology, October 7-9, 2009, 2009.

168

[Tar10] Gabor Tardos. Capacity of Collusion Secure Fingerprinting - A Tradeoff between
Rate and Efficiency. Information Hiding - Lecture Notes in Computer Science,
6387:81–85, 2010.

[Tas05] Tamir Tassa. Low Bandwidth Dynamic Traitor Tracing Schemes. J. Cryptol.,
18:167–183, 2005.

[TM05] Tran Van Trung and Sosina Martirosyan. New Constructions for IPP Codes. Des.
Codes Cryptography, 35:227–239, 2005.

[Tur41] Paul Turan. On an Extremal Problem in Graph Theory. Matematikai és Fizikai
Lapok, 48:436––452, 1941.

[XMS07] Yu Xiong, Jun Ma, and Hao Shen. On Optimal Codes with w-Identifiable Parent
Property. Des. Codes Cryptography, 45:65–90, 2007.

[Yac01] Yacov Yacobi. Improved Boneh-Shaw Content Fingerprinting. Proceedings of the
2001 Conference on Topics in Cryptology: The Cryptographer’s Track at RSA, pages
378–391, 2001.

169

	Introduction
	Outline

	Terminology
	Fingerprinting codes
	Coalitions and forgeries
	Attack models
	Pirate strategies
	Example

	Fingerprinting schemes
	Deterministic versus probabilistic
	Static versus dynamic

	Notation

	Preliminaries
	Coding theory
	Probability theory
	Graph theory
	Miscellaneous

	I Literature survey
	Deterministic static schemes
	Introduction
	Frameproof codes
	Constructions from linear error-correcting codes
	Concatenating codes

	Secure frameproof codes
	IPP codes
	Summary

	Probabilistic static schemes
	Introduction
	Lower bounds
	Linear in c
	Quadratic in c
	Finding the final constant
	Non-binary alphabets

	The Boneh-Shaw scheme
	Introduction
	The cubic Boneh-Shaw scheme
	The quartic Boneh-Shaw scheme
	Limitations
	Summary

	The Tardos scheme
	Introduction
	The original Tardos scheme
	Improvements
	Summary

	Summary

	Deterministic dynamic schemes
	Introduction
	Graph notation
	Example

	Lower bounds
	The Fiat-Tassa scheme
	Introduction
	The Fiat-Tassa scheme
	Summary

	The Berkman-Parnas-Sgall schemes
	Introduction
	The degree algorithm
	The clique algorithm
	The optimal algorithm
	Summary

	Summary

	Probabilistic dynamic schemes
	Introduction
	The Tassa scheme
	Summary

	II The Tardos Quadrilogy
	The optimal Tardos scheme
	Introduction
	Construction
	The Tardos fingerprinting scheme
	Results for the asymmetric Tardos scheme
	Results for the symmetric Tardos scheme
	Integral codelengths

	Soundness
	Completeness
	Optimization
	Asymptotics
	Summary

	The dynamic Tardos scheme
	Introduction
	Construction
	Soundness
	Special completeness
	Optimization
	Discussion
	Variant
	Summary

	The universal Tardos scheme
	Introduction
	Construction
	Results
	Discussion
	Summary

	The staircase Tardos scheme
	Introduction
	Construction
	Results
	Summary

	Publications
	Paper: Optimal symmetric Tardos traitor tracing codes
	Paper: Dynamic Tardos traitor tracing
	Irdeto Patent

	Conclusion
	Comparison
	Summary
	Future work
	The Tardos scheme: Discrete distribution functions
	The Tardos scheme: Bigger alphabets
	Rate of c-secure frameproof codes
	Deterministic dynamic schemes for known coalition sizes
	Probabilistic dynamic schemes: Lower bounds
	Other schemes
	Watermarking

	Optimal symmetric Tardos traitor tracing codes
	Bibliography

