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/ department of mathematics and computer science 1. Problem description

Problem 1 - Illegal redistribution
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/ department of mathematics and computer science 1. Problem description

Add unique �ngerprints (watermarks) to each copy.

This works only if it is hard to detect, edit and/or remove the watermarks.

Solution 1 - Embed watermarks
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/ department of mathematics and computer science 1. Problem description

Colluders compare their copies, searching for di�erences. Since their data
is the same, the di�erences must be part of the watermark.

Colluders can then detect and edit that part of the �ngerprint, making it
hard to trace them.

Problem 2 - Collusion-attacks
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What makes the problem so hard?

• If the �ngerprints are very di�erent, then it is easy for colluders to
detect and edit big parts of the watermark

• If the �ngerprints are very similar, then it is hard to distinguish be-
tween users and get accurate accusations

But using smart mathematical techniques, we can construct �ngerprinting
schemes resistant against collusion attacks.

Solution 2 - Fingerprinting codes
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• Set of users U = {1, . . . , n}
• Coalition or traitors C = {j1, . . . , jc} ⊆ U

• Fingerprinting code X : Codewords (vectors) over some alphabet Q

� Alphabet size: q symbols (|Q| = q)

� Codelength: ` positions (~x ∈ Q`)

� Cardinality: n users (X = {~x1, . . . , ~xn})
• Code X in matrix form: X ∈ Qn×`

X =

←− ~x1 −→
...

←− ~xn −→

 e.g.X =


0 2 1 1 2 1 3
3 1 2 0 0 0 2
3 3 2 0 1 0 1
2 3 1 2 2 2 1

 ∈ {0, . . . , 3}4×7
• Coalition generates forgery ~y using some pirate strategy ρ

Abstraction
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Assumptions on what pirates can do:

• If a coalition sees symbols S ⊆ Q on position i (|S| > 1), then. . .

� Restricted digit model: ~yi ∈ S.
� Arbitrary digit model: ~yi ∈ Q.
� Allowing erasures: ~yi ∈ S ∪ {?} (or ~yi ∈ Q ∪ {?})
� Binary alphabet: All equivalent

• Marking Assumption: If S = {σ} then ~yi = σ

• Secret embedding of �ngerprints in data is perfect (not our problem)

Example:

X(C) =

(
0 2 1 1 2 1 3
2 3 1 2 2 2 1

)
~y =

(
0 3 1 2 2 1 3

)

Pirate strategy



9/53

/ department of mathematics and computer science 2. Mathematical formulation

Besides these assumptions, pirates can do anything they want. Suppose
q = 2 and 0 < k < c is the number of ones seen by C (k = 0 or k = c:
Marking Assumption).

• Random: yi ∈R {0, 1}
• Always 1: yi = 1

• Majority: yi = 1 if k > c/2 and yi = 0 if k < c/2

� Majority/one: If k = c/2, yi = 1

� Majority/�rst: If k = c/2, yi = σ1

� Majority/random: If k = c/2, yi ∈R {0, 1}
• Minority: yi = 1 if k < c/2 and yi = 0 if k > c/2

� Minority/. . .

• Interleaving: P[yi = 1] = k/c (i.e. yi ∈R {σ1, . . . , σc})
• Scapegoat: yi = σ1

The scheme should be secure against all attacks.

Some pirate strategies
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• Resistancy against many colluders

• Resistancy against any pirate strategy

• Short codelength
� Less redundant data

• Small alphabet

� In practice: Bandwidth needed linear in alphabet size

• Avoid accusing innocent users

• Accuse at least one guilty user (preferably more)

What do we want?
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...
...

~x1

~xn

pirate 1

pirate c

detect illegal copy

secret data

accusation

...

~x2

σ(~y) ⊆ U

~y = ρ(~xj1, . . . , ~xjc)

(user j1)

(user jc)

~xj1

~xjc

...

initialization

code X = {~xj}
fingerprinting

pirate
strategy

user 1

user 2

user n

coalition

forged codeword

accused users

• Send codewords

• Coalition produces
some forgery

• Receive forgery
• Accuse certain users

• Advantages:
� Many applications

� Only one codeword

• Disadvantages:
� More data needed

� Catch few colluders

Static schemes
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...
...

~a1

~an

pirate 1

pirate c

detect illegal copy

secret data

...

~a = ρ(~aj1, . . . ,~ajc)

(user j1)

(user jc)

~aj1

~ajc

...

initialization

code A = {~aj}
fingerprinting

pirate
strategy

user 1

user n

forged codeword
use results

...
...

pirate 1

pirate c

detect illegal copy

secret data

...

σ(~z) ⊆ U

~b = ρ(~bj1, . . . ,
~bjc)

(user j1)

(user jc)

~bj1

~bjc

...

fingerprinting

pirate
strategy

user 1

user n

forged codeword

accused users

use results

code B = {~bj}
~b1

~bn

. . .

t = 1

t = 2

t = . . .

• Send �rst set of codewords

• Receive �rst forgery
• Send new codewords
...

• Receive �nal forgery
• Accuse users based on all results

• Advantages:
� Less total data needed

� Possibly catch all colluders

• Disadvantages:
� Only few applications

� Computations required
during the broadcast

Dynamic schemes
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Deterministic schemes: No error

• Always absolute certainty
• Soundness: Never accuse any innocent users

• Completeness: Always accuse at least one guilty user

• Always alphabet size q ≥ c + 1

•Works only in restricted digit model

Probabilistic schemes: Error bounded by ε > 0

• Small probability of error

• Soundness: Accuse no innocent users with probability at least 1− ε
• Completeness: Accuse a guilty user with probability at least 1− ε
• Decoupling ε to ε1 (Soundness) and ε2 (Completeness): ε1 � ε2

• Alphabet size q ≥ 2

•Works against any attack model

Deterministic/probabilistic schemes
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• Identi�able Parent Property: Always identify a "parent"

• Advantages:
� No error, always absolute certainty

� Only one codeword necessary

• Disadvantages:
� Large alphabet size (q ≥ c + 1, or even q ≥ c2)

� Long codelength

• Lower bounds on codelength:

� ` = Ω(c log(n/c)/ log(q)) [Bla03b]

� ` = Ω(c2 log(n)/ log(q)) [AS04]

• Upper bounds on codelength: (constructions)

� ` = O(c2 log(n)/ log(q)) for q = O(c2 log(n)) [SSW01]

� ` = O(c2 log(n)/ log(q · g(c))) for any q ≥ c, for some g(c) [AS04]

Deterministic static schemes (IPP codes)
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X =



0 0 0 0
0 1 1 1
0 2 2 2
1 0 1 2
1 1 2 0
1 2 0 1
2 0 2 1
2 1 0 2
2 2 1 0



Tetracode; Hamming code [HVLLT98] [BEN07]
Only non-trivial "beautiful" code [BEN07]

• n = 9 users

• c = 2 colluders

• q = 3 alphabet size

• ` = 4 codelength

Why is it secure against 2 colluders?

• Every two codewords have distance 3

• Every word has distance ≤ 1 to exactly one codeword

~a = (1, 0,1, 2)
~b = (2,2,1,0)
~y = (1, 2, 1, 0)

→ d(~y,~b) = 1

IPP codes: Example



16/53

/ department of mathematics and computer science 4. Deterministic static schemes

• If C = (`,K, d)q is an error-correcting code of cardinality n = K
satisfying d > `(1− 1/c2), then C is a c-IPP-code. [SSW01] [SNW03]

• If q ≥ ` − 1 and k = d`/c2e, then there exists a linear Reed-Solomon
error-correcting code with parameters [`, k, d]q satisfying d > `(1 −
1/c2) of cardinality n = qk = qd`/c2e. [SSW01]

• If q ≥ ` − 1, then there exist c-IPP codes satisfying n = qd`/c2e, i.e.
` = O(c2 log(n)) and q = O(c2 log(n)).

IPP codes: Error-correcting codes
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• Probabilistic static schemes: Static schemes with ε > 0 error

• Advantages:
� Small alphabet size (q ≥ 2)

� Short codelength

• Disadvantages:
� Small probability of error ε

• Lower bounds on codelength:

� ` = Ω(c log(1/cε)) for q = 2 [BS98]

� ` = Ω(c2 log(1/ε)) for q = 2 [Tar03]

� ` ≥ 1.38c2 log(1/ε) for q = 2 [HM09b]

• Upper bounds on codelength: (constructions)

� ` = O(c4 log(n/ε) log(1/ε)) for q = 2 [BS98]

� ` = 100c2 log(1/ε) for q = 2 [Tar03]

� ` ≈ 4.93c2 log(1/ε) for q = 2 and c→∞ [SKC08]

Probabilistic static schemes
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1. Initialization: Choose the codelength `(c, ε) and parameters
t(c), Z(c, ε), and choose probabilities pi ∼ Ft.

2. Codeword generation: Choose the symbols Xji by Xji ∼ Ber(pi).

Position 1 Position 2 . . . Position `
Probability pi p1 ∼ Ft p2 ∼ Ft . . . p` ∼ Ft

User 1 X1,1 ∼ Ber(p1) X1,2 ∼ Ber(p2) . . . X1,` ∼ Ber(p`)
User 2 X2,1 ∼ Ber(p1) X2,2 ∼ Ber(p2) . . . X2,` ∼ Ber(p`)

... ... ... . . . ...
User n Xn,1 ∼ Ber(p1) Xn,2 ∼ Ber(p2) . . . Xn,` ∼ Ber(p`)

The Tardos scheme - Rough outline
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1. Initialization: Choose the codelength `(c, ε) and parameters
t(c), Z(c, ε), and choose probabilities pi ∼ Ft.

2. Codeword generation: Choose the symbols Xji by Xji ∼ Ber(pi).

Position 1 Position 2 . . . Position `
Probability pi p1 = 0.03 p2 = 0.81 . . . p` = 0.1

User 1 X1,1 = 0 X1,2 = 1 . . . X1,` = 0
User 2 X2,1 = 0 X2,2 = 0 . . . X2,` = 0

... ... ... . . . ...
User n Xn,1 = 0 Xn,2 = 1 . . . Xn,` = 1

The Tardos scheme - Rough outline
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1. Initialization: Choose the codelength `(c, ε) and parameters
t(c), Z(c, ε), and choose probabilities pi ∼ Ft.

2. Codeword generation: Choose the symbols Xji by Xji ∼ Ber(pi).

3. Accusation (precomputation): Calculate the accusation matrix U by
Uji = +

√
(1− p)/p if Xji = 1 and Uji = −

√
p/(1− p) if Xji = 0

4. Accusation (given forgery ~y): Accuse user j if Sj = (U~y)j > Z.

uniform distribution

distribution ft
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The Tardos scheme - Rough outline
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Dummy parameters: n = 5, ` = 6, Z = 1, ~p = (0.8, 0.7, 0.2, 0.1, 0.5, 0.3)

X =


1 1 0 0 0 1
0 1 0 0 1 0
1 0 0 0 1 1
1 0 1 0 0 0
1 1 0 0 1 0

 , U ≈


0.5 0.7 −0.5 −0.3 −1.0 1.5
−2.0 0.7 −0.5 −0.3 1.0 −0.7
0.5 −1.5 −0.5 −0.3 1.0 1.5
0.5 −1.5 2.0 −0.3 −1.0 −0.7
0.5 0.7 −0.5 −0.3 1.0 −0.7


Some examples of forgeries and accusations:

Forgery ~y S1 S2 S3 S4 S5 σ(~y) Comment
(0, 1, 1, 0, 0, 1) 1.7 −0.5 −0.5 −0.2 −0.5 {1}
(0, 1, 0, 0, 1, 0) −0.3 1.7 −0.5 −2.5 1.7 {2, 5}
(1, 0, 0, 1, 1, 0) −0.8 −1.3 1.2 −0.8 1.2 {3, 5} impossible!
(0, 0, 0, 0, 0, 0) 0 0 0 0 0 ∅ always no one
(1, 1, 1, 1, 1, 1) 0.9 −1.8 0.7 −1.0 0.7 ∅
(1, 1, 1, 0, 1, 1) 1.2 −1.5 1.0 −0.7 1.0 {1, 3, 5} removed a 1
(1, 1, 1, 0, 0, 1) 2.2 −2.5 0.0 0.3 0.0 {1} removed a 1
(0, 0, 1, 0, 0, 0) −0.5 −0.5 −0.5 2.0 −0.5 {4} user 4 accused

The Tardos scheme - Dummy example
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Scheme parameters: ε = e−5 ≈ 0.0067, c = 5, n = 100 ⇒ ` = 12500, t =
1/1500, Z = 500, pi ∼ Ft, X ∈ {0, 1}100×12500, U ∈ R100×12500 (then U
already contains 1.250.000 real numbers)

Simulations (interleaving attack): Select an arbitrary coalition, calcu-
late ~y, calculate σ(~y) and see if the accusation worked

0 2000 4000 6000 8000 10000 12000
0.0

0.2

0.4

0.6

0.8

1.0

� position i

�
p

ro
b

a
b

il
it

y
p

i

Values of pi

0.0 0.2 0.4 0.6 0.8 1.0
0

100

200

300

400

500

600

� probability p

�
n
u
m

b
e
r

o
f

p
o
s
it

io
n
s

i
w

it
h

p
i

=
p

Histogram of values pi

The Tardos scheme - Real example
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•Why are no innocent users accused?

� All codewords are independent, so it is impossible to frame anyone

� Positive and negative contributions outweigh eachother

� Sj is roughly distributed as N (0,
√
`) while Z �

√
`

•Why are guilty users accused?

� On detectable positions, pirates cannot decrease S =
∑

j∈C Sj

� On undetectable positions, S de�nitely increases

� S
c
is roughly distributed as N (µ̃`/c, σ̃2`/c2) while Z � µ̃`/c
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The Tardos scheme - Why does it work?
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Suppose S∗j = Sj/
√
` ∼ N (0, 1), S∗ = S

c
/
√
` ∼ N (µ̃

√
`/c, σ̃2/c2), Z∗ =

Z/
√
`. Then we need ` = Θ(c2) and Z = Θ(c) for the scheme to work.

• If ` = o(c2) then E[S∗]→ 0 and Var[S∗]→ 0 as c→∞
• If ` = Θ(c2) then E[S∗]→ L and Var[S∗]→ 0 as c→∞
• If Z = o(

√
`) then Z∗ → 0 = E[S∗j ] so ε1 → 1/2 which is bad

• If Z > Ω(
√
`) then Z∗ →∞ > E[S∗] so ε2 → 1 which is bad
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The Tardos scheme - ` = Θ(c2), Z = Θ(c)



26/53

/ department of mathematics and computer science 5. Probabilistic static schemes

Suggested improvements:

• Use symmetric accusation function instead of U [SVCT06]

• Tighten the analysis in the proof [SVCT06], [BT08]

• Use the Gaussian approximation to estimate error probabilities [SS10]

• Use a discrete optimal distribution Ft [NFH
+09]

With these optimizations, the factor 100 has been reduced to less than 5
in the asymptotic case of c→∞

The Tardos scheme - Improvements
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Irdeto's implementation: Uniformly random bits, accusation weights
Hamming distance between the forgery and the codeword (simply count
the number of matches), accuse if these weights are too large. This is a
special case of Tardos' scheme with F ≡ 1/2. But is it safe?

Minority attack, 3 traitors:

Received symbols Output Matches Di�erences Increase in S
0, 0, 0 0 3 0 +3
0, 0, 1 1 1 2 −1
0, 1, 0 1 1 2 −1
0, 1, 1 0 1 2 −1
1, 0, 0 1 1 2 −1
1, 0, 1 0 1 2 −1
1, 1, 0 0 1 2 −1
1, 1, 1 1 3 0 +3

12 12 Total: 0

Intermezzo: Irdeto's scheme



28/53

/ department of mathematics and computer science 5. Probabilistic static schemes

Irdeto's implementation: Uniformly random bits, accusation weights
Hamming distance between the forgery and the codeword (simply count
the number of matches), accuse if these weights are too large. This is a
special case of Tardos' scheme with F ≡ 1/2. But is it safe?

Minority attack, 5 traitors:

Received symbols Output Matches Di�erences Increase in S
0, 0, 0, 0, 0 0 5 0 +5
0, 0, 0, 0, 1 1 1 4 −3
0, 0, 0, 1, 0 1 1 4 −3
0, 0, 0, 1, 1 1 2 3 −1

... ... ... ... ...
1, 1, 1, 1, 0 0 1 4 −3
1, 1, 1, 1, 1 0 5 0 +5

70 90 Total: −20

Intermezzo: Irdeto's scheme
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• Restricted digit model: only symbols of coalition allowed

• Advantages:
� No error

� Shorter time than length in static schemes

� Catch all colluders with same e�ort

� Works against any number of colluders; c need not be known

• Disadvantages:
� Only works dynamically

� Large alphabet size (q > c)

• Upper bounds on codelength, time: (constructions)

� q = 2c + 1, t ≤ c log(n) + c [FT01]

� q = c + 1, t = O(c3 log(n)) [BPS00]

� q = c + 1, t = O(c2 + c log(n)) [BPS00]

Deterministic dynamic schemes
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Graph description: Vertices (points) V , edges (lines) E

• Vertices: Disjoint subsets of U (forms a partition of U)

• Edges: If S ∼ T then S ∪ T contains at least one pirate

• Vertex colors: Colors correspond to symbols

• A vertex S gets color c if all users in S get symbol c

• At least c pirates ⇔ Any vertex cover has size at least c

1,3,4

2,8

5,6

10

7,9

General graph notation
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Example: 8 users, 2 traitors (users 2 and 5)
Colors seen by coalition: Blue, Blue

1...8

Output color: Blue

The Fiat-Tassa scheme
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Example: 8 users, 2 traitors (users 2 and 5)
Colors seen by coalition: Yellow, Green

1234

5678

empty

Output color: Yellow

The Fiat-Tassa scheme
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Example: 8 users, 2 traitors (users 2 and 5)
Colors seen by coalition: Yellow, Blue

12

34

5678

Output color: Yellow

The Fiat-Tassa scheme
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Example: 8 users, 2 traitors (users 2 and 5)
Colors seen by coalition: Green, Blue

1

2

3...8

Output color: Blue

The Fiat-Tassa scheme
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Example: 8 users, 2 traitors (users 2 and 5)
Colors seen by coalition: Green, Purple

1

2

345

678

empty

Output color: Purple

The Fiat-Tassa scheme
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Example: 8 users, 2 traitors (users 2 and 5)
Colors seen by coalition: Green, Rose

1

2

34

5

678

Output color: Rose

The Fiat-Tassa scheme
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Example: 8 users, 2 traitors (users 2 and 5)
Colors seen by coalition: Green

1

2

34678

Output color: Green

The Fiat-Tassa scheme
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Example: 8 users, 2 traitors (users 2 and 5)
Colors seen by coalition: None

134678

Output color: None

The Fiat-Tassa scheme
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• Isolating a single traitor: At most t = log2(n) steps

• Tracing at least one traitor: At most t = log2(n) + 1 steps

• Tracing all traitors: At most t = c log2(n) + c steps

• Colors needed (alphabet size): At most q = 2c + 1 (2 for each traitor,
1 for not yet suspected users)

• Using certain pirate strategies, these bounds are also "often" achieved

The Fiat-Tassa scheme
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The Fiat-Tassa scheme - Simulations
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Compare strategies for n = 100, c = 5 with 100 simulations.
Left: Time used for di�erent pirate strategies.
Right: Maximum number of colors used during a tracing process.

29-30 31-32 33-34 35-36 37-38 39-40

Random

Interleaving

Majority�first

Majority�random

Minority�first

Minority�random

10

20

30

40

50

1 3 5 7 9 11

Random

Interleaving

Majority�first

Majority�random

Minority�first

Minority�random

20

40

60

80

100

The Fiat-Tassa scheme - Strategies
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Certain pairs of not yet connected vertices get the same color. If a received
color belongs to two vertices, add an edge between the two vertices.

• Degree algorithm: t = O(c3 log(n)), q = c + 1

� Keep adding edges until vertices get high enough degrees

� If a vertex has degree d > c, then it must be guilty

� Enough pairs of unconnected vertices always exist

� Complication: c may not be known

• Clique algorithm: t = O(c3 log(n)), q = c + 1

� Keep adding edges until cliques occur (clique: complete subgraph)

� Any clique of size k contains at least k − 1 traitors

� At some point, traitors will be alone in a set and caught

• Optimal algorithm: t = O(c2 + c log(n)), q = c + 1

� Very complicated extension of the clique algorithm

The Berkman-Parnas-Sgall scheme
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• Inner code of Fiat-Tassa scheme: IPP-code

� X = {0, 1, . . . , q − 1}
� Constant codelength ` = 1

� Maximum alphabet size q ≤ 2c + 1

• Replace with new inner code of hybrid scheme: Probabilistic code

� X = {~x1, . . . , ~xq}
� Maximum codelength ` > 1

� Constant alphabet size q ≥ 2

• Advantage: Small alphabet size (q ≥ 2)

• Disadvantages:
� Errors stack up, so it's hard to bound the error probability

� Longer codelength and time needed

• Upper bound on codelength, time: (constructions)

� q = 2, t · ` = O(c4 log(1/ε)) [Tas05]

Probabilistic dynamic schemes
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• Inner code of Tassa's hybrid scheme: Boneh-Shaw code

� Maximum codelength ` = O(c3 log(1/ε))

� Constant alphabet size q = 2

• Total "e�ort" bounded by t · ` = O(c4 log2(1/ε))

• Tassa's analysis also gives no better bound than O(c4 log2(1/ε))

The Tassa scheme
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Let ε = Θ(1/n) and k = log(1/ε) = Θ(log(n)). Then:

q ε ` t ` · t
Det. static Ω(c) 0 Ω(c2k) O(1) Ω(c2k)
- [SSW01] O(c2k) 0 O(c2k) 1 O(c2k)
- [AS04] O(c) 0 O(c2k) 1 O(c2k)
Prob. static O(1) Ω(ε) Ω(c2k) O(1) Ω(c2k)
- [BS98] 2 O(ε) O(n3k2) 1 O(n3k2)
- [BS98] 2 O(ε) O(c4k2) 1 O(c4k2)
- [Tar03] 2 O(ε) O(c2k) 1 O(c2k)
Det. dynamic Ω(c + α) 0 O(1) Ω(c2/α + ck) Ω(c2/α + ck)
- [FT01] 2c + 1 0 1 O(ck) O(ck)
- [BPS00] c + 1 0 1 O(c3k) O(c3k)
- [BPS00] c + 1 0 1 O(c2 + ck) O(c2 + ck)
Prob. dynamic O(1) Ω(ε) ? ? ?
- [Tas05] 2 O(ε) O(c3k2) O(ck) O(c4k3)

Summary
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• Investigate other options for a hybrid scheme

• Look at some more important papers

• Investigate practical implementation issues

• Consider the special (practical) case for c = 5 . . . 25

• Run simulations with real values used in practice

Future work
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Thank you for your attention!

Any questions?

Questions
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