

Sieving for shortest lattice vectors using fast search algorithms

Thijs Laarhoven

(joint work with Michele Mosca, Joop van de Pol, Benne de Weger)

mail@thijs.com
http://www.thijs.com/

Rutgers University, New Brunswick, USA (January 13, 2015)

TU/e

Lattices

What is a lattice?

TU/e

Lattices

What is a lattice?

TU/e Lattices What is a lattice?

TU/e Lattices Shortest Vector Problem (SVP)

TU/e Lattices Shortest Vector Problem (SVP)

TU/e Lattices Closest Vector Problem (CVP)

TU/e Lattices Closest Vector Problem (CVP)

Lattices Applications

- "Constructive cryptography": Lattice-based cryptosystems
 - Based on hard lattice problems (SVP, CVP, LWE, SIS)
 - ▶ NTRU cryptosystem [HPS98, ...]
 - ► Fully Homomorphic Encryption [Gen09,...]
 - Candidate for post-quantum cryptography

Lattices Applications

- "Constructive cryptography": Lattice-based cryptosystems
 - Based on hard lattice problems (SVP, CVP, LWE, SIS)
 - ► NTRU cryptosystem [HPS98, ...]
 - ► Fully Homomorphic Encryption [Gen09,....]
 - Candidate for post-quantum cryptography
- "Destructive cryptography": Lattice cryptanalysis
 - Attack knapsack-based cryptosystems [Sha82, LO85]
 - Attack RSA with Coppersmith's method [Cop97]
 - Attack lattice-based cryptosystems [Ngu99, JJ00]

Lattices Applications

- "Constructive cryptography": Lattice-based cryptosystems
 - Based on hard lattice problems (SVP, CVP, LWE, SIS)
 - ▶ NTRU cryptosystem [HPS98, ...]
 - ► Fully Homomorphic Encryption [Gen09,]
 - Candidate for post-quantum cryptography
- "Destructive cryptography": Lattice cryptanalysis
 - Attack knapsack-based cryptosystems [Sha82, LO85]
 - ► Attack RSA with Coppersmith's method [Cop97]
 - Attack lattice-based cryptosystems [Ngu99, JJ00]

How hard are hard lattice problems such as SVP?

TU/e Nguyen-Vidick sieve

TU/e

Nguyen-Vidick sieve

1. Sample a list L of random lattice vectors

Nguyen-Vidick sieve

Overview

Heuristic (Nguyen and Vidick, J. Math. Crypt. '08)

The Nguyen-Vidick sieve runs in time $(4/3)^n$ and space $\sqrt{4/3}^n$.

Nguyen-Vidick sieve

Overview

Heuristic (Nguyen and Vidick, J. Math. Crypt. '08)

The Nguyen-Vidick sieve runs in time $2^{0.415n}$ and space $2^{0.208n}$.

TU/e

Two-level sieve

1. Sample a list L of random lattice vectors

Overview

Heuristic (Nguyen and Vidick, J. Math. Crypt. '08)

The one-level sieve runs in time $2^{0.4150n}$ and space $2^{0.2075n}$.

V₁₄

Overview

Heuristic (Nguyen and Vidick, J. Math. Crypt. '08)

The one-level sieve runs in time $2^{0.4150n}$ and space $2^{0.2075n}$.

Heuristic (Wang et al., ASIACCS'11)

The two-level sieve runs in time $2^{0.3836n}$ and space $2^{0.2557n}$.

¹14

Overview

Heuristic (Nguyen and Vidick, J. Math. Crypt. '08)

The one-level sieve runs in time $2^{0.4150n}$ and space $2^{0.2075n}$.

Heuristic (Wang et al., ASIACCS'11)

The two-level sieve runs in time $2^{0.3836n}$ and space $2^{0.2557n}$.

Heuristic (Zhang et al., SAC'13)

The three-level sieve runs in time $2^{0.3778n}$ and space $2^{0.2833n}$.

Overview

Heuristic (Nguyen and Vidick, J. Math. Crypt. '08)

The one-level sieve runs in time $2^{0.4150n}$ and space $2^{0.2075n}$.

Heuristic (Wang et al., ASIACCS'11)

The two-level sieve runs in time $2^{0.3836n}$ and space $2^{0.2557n}$.

Heuristic (Zhang et al., SAC'13)

The three-level sieve runs in time $2^{0.3778n}$ and space $2^{0.2833n}$.

Conjecture

The four-level sieve runs in time $2^{0.3774n}$ and space $2^{0.2925n}$, and higher-level sieves are not faster than this.

TU/e

Sieving

Space/time trade-off

Quantum Search

Classical form

Problem: Given a list L of size N, and a function $f:L\to\{0,1\}$ such that there is exactly one element $e\in L$ with f(e)=1. Find this element e.

- Classical search: $\Theta(N)$ time
 - Quantum search: $\Theta(\sqrt{N})$ time [Gro96]

Quantum Search

General form

Problem: Given a list L of size N, and a function $f:L\to\{0,1\}$ such that there are c=O(1) elements $e\in L$ with f(e)=1. Find one such element e.

- Classical search: $\Theta(N/c)$ time
- Quantum search: $\Theta(\sqrt{N/c})$ time [Gro96]

Quantum Search General form

Problem: Given a list L of size N, and a function $f:L\to\{0,1\}$ such that there are c=O(1) elements $e\in L$ with f(e)=1. Find one such element e.

- Classical search: $\Theta(N/c)$ time
 - Quantum search: $\Theta(\sqrt{N/c})$ time [Gro96]

Potentially speed up search subroutines in sieving

Sieving

Sieving

Nguyen-Vidick sieve with L\$H

1. Sample a list L of random lattice vectors

Nguyen-Vidick sieve with LSH

Overview

- Two parameters to tune
 - k = O(n): Number of hyperplanes, leading to 2^k regions
 - $t = 2^{O(n)}$: Number of different, independent "hash tables"

Nguyen-Vidick sieve with LSH

Overview

- Two parameters to tune
 - k = O(n): Number of hyperplanes, leading to 2^k regions
 - $t = 2^{O(n)}$: Number of different, independent "hash tables"
- Space complexity: $2^{0.34n+o(n)}$
 - ► Store 2^{0.13n} hash tables, each containing all 2^{0.21n} vectors

Nguyen-Vidick sieve with L\$H

Overview

- Two parameters to tune
 - k = O(n): Number of hyperplanes, leading to 2^k regions
 - $t = 2^{O(n)}$: Number of different, independent "hash tables"
- Space complexity: $2^{0.34n+o(n)}$
 - ► Store $2^{0.13n}$ hash tables, each containing all $2^{0.21n}$ vectors
- Time complexity: $2^{0.34n+o(n)}$
 - Compute $2^{0.13n}$ hashes, and go through $2^{0.13n}$ vectors
 - ▶ Repeat this for each of $2^{0.21n}$ vectors

Nguyen-Vidick sieve with LSH

- Two parameters to tune
 - k = O(n): Number of hyperplanes, leading to 2^k regions
 - $t = 2^{O(n)}$: Number of different, independent "hash tables"
- Space complexity: $2^{0.34n+o(n)}$
 - ▶ Store $2^{0.13n}$ hash tables, each containing all $2^{0.21n}$ vectors
- Time complexity: $2^{0.34n+o(n)}$
 - Compute $2^{0.13n}$ hashes, and go through $2^{0.13n}$ vectors
 - ▶ Repeat this for each of 2^{0.21n} vectors

Heuristic

Sieving with LSH runs in time $2^{0.34n+o(n)}$ and space $2^{0.34n+o(n)}$.

TU/e

Sieving

Space complexity

Sieving

Sieving with LSH

Space complexity

Sieving with LSH

Sieving with LSH

Space complexity

