
New directions in approximate nearest
neighbors for the angular distance

Thijs Laarhoven

mail@thijs.com
http://www.thijs.com/

Proximity Workshop, College Park (MD), USA
(January 13, 2016)

mailto:mail@thijs.com
http://www.thijs.com/


O

Nearest neighbor searching



O

Nearest neighbor searching
Data set



O

Nearest neighbor searching
Target



O

Nearest neighbor searching
Nearest neighbor



O

Nearest neighbor searching
Nearest neighbor (`1-norm)



O

Nearest neighbor searching
Nearest neighbor (angular distance)



O

Nearest neighbor searching
Nearest neighbor (`2-norm)



O
r

Nearest neighbor searching
Distance guarantee



O
r

Nearest neighbor searching
Approximate nearest neighbor



O
r

c · r

Nearest neighbor searching
Approximation factor c > 1



O

Nearest neighbor searching
Example: Precompute Voronoi cells



O

Nearest neighbor searching
Example: Precompute Voronoi cells



O

Nearest neighbor searching
Given a target...



O

Nearest neighbor searching
...quickly find the right cell



O

Nearest neighbor searching
Works well in low dimensions



Nearest neighbor searching
Problem setting

• High dimensions d

• Large data set of size n = 2Ω(d/ log d)

I Smaller n? =⇒ Use JLT to reduce d

• Assumption: Data set lies on the sphere

I Angular NNS in Rd equivalent to Eucl. NNS on the sphere
I Reduction from Eucl. NNS in Rd to Eucl. NNS on the sphere [AR’15]

• “Random” case: c · r =
√
2

I Random unit vectors are usually approximately orthogonal

• Goal: Query time O(nρ) with ρ < 1



Nearest neighbor searching
Problem setting

• High dimensions d
• Large data set of size n = 2Ω(d/ log d)

I Smaller n? =⇒ Use JLT to reduce d

• Assumption: Data set lies on the sphere

I Angular NNS in Rd equivalent to Eucl. NNS on the sphere
I Reduction from Eucl. NNS in Rd to Eucl. NNS on the sphere [AR’15]

• “Random” case: c · r =
√
2

I Random unit vectors are usually approximately orthogonal

• Goal: Query time O(nρ) with ρ < 1



Nearest neighbor searching
Problem setting

• High dimensions d
• Large data set of size n = 2Ω(d/ log d)

I Smaller n? =⇒ Use JLT to reduce d
• Assumption: Data set lies on the sphere

I Angular NNS in Rd equivalent to Eucl. NNS on the sphere
I Reduction from Eucl. NNS in Rd to Eucl. NNS on the sphere [AR’15]

• “Random” case: c · r =
√
2

I Random unit vectors are usually approximately orthogonal

• Goal: Query time O(nρ) with ρ < 1



Nearest neighbor searching
Problem setting

• High dimensions d
• Large data set of size n = 2Ω(d/ log d)

I Smaller n? =⇒ Use JLT to reduce d
• Assumption: Data set lies on the sphere

I Angular NNS in Rd equivalent to Eucl. NNS on the sphere
I Reduction from Eucl. NNS in Rd to Eucl. NNS on the sphere [AR’15]

• “Random” case: c · r =
√
2

I Random unit vectors are usually approximately orthogonal

• Goal: Query time O(nρ) with ρ < 1



Nearest neighbor searching
Problem setting

• High dimensions d
• Large data set of size n = 2Ω(d/ log d)

I Smaller n? =⇒ Use JLT to reduce d
• Assumption: Data set lies on the sphere

I Angular NNS in Rd equivalent to Eucl. NNS on the sphere
I Reduction from Eucl. NNS in Rd to Eucl. NNS on the sphere [AR’15]

• “Random” case: c · r =
√
2

I Random unit vectors are usually approximately orthogonal
• Goal: Query time O(nρ) with ρ < 1



O

Nearest neighbor searching
“Random” instances



O

Nearest neighbor searching
“Random” instances



O

Nearest neighbor searching
“Random” instances



O

c · r = √
2

Nearest neighbor searching
“Random” instances



O

c · r = √
2

Nearest neighbor searching
“Random” instances



O

c · r = √
2

r

Nearest neighbor searching
“Random” instances



Locality-sensitive hashing
Overview

• Idea: Use nice partitions of the space

I Nearby vectors are often in the same region
I Distant vectors are unlikely to be in the same region

• Precomputation: Store hash tables of vectors per region

I For each region, store contained vectors from data set
I Rerandomization: Many partitions to increase success probability

• Query: Check hash tables for collisions

I Compute target’s region for each hash table
I Check corresponding buckets for potential nearest neighbors
I Reduces search space before doing a linear search



Locality-sensitive hashing
Overview

• Idea: Use nice partitions of the space
I Nearby vectors are often in the same region
I Distant vectors are unlikely to be in the same region

• Precomputation: Store hash tables of vectors per region

I For each region, store contained vectors from data set
I Rerandomization: Many partitions to increase success probability

• Query: Check hash tables for collisions

I Compute target’s region for each hash table
I Check corresponding buckets for potential nearest neighbors
I Reduces search space before doing a linear search



Locality-sensitive hashing
Overview

• Idea: Use nice partitions of the space
I Nearby vectors are often in the same region
I Distant vectors are unlikely to be in the same region

• Precomputation: Store hash tables of vectors per region
I For each region, store contained vectors from data set
I Rerandomization: Many partitions to increase success probability

• Query: Check hash tables for collisions

I Compute target’s region for each hash table
I Check corresponding buckets for potential nearest neighbors
I Reduces search space before doing a linear search



Locality-sensitive hashing
Overview

• Idea: Use nice partitions of the space
I Nearby vectors are often in the same region
I Distant vectors are unlikely to be in the same region

• Precomputation: Store hash tables of vectors per region
I For each region, store contained vectors from data set
I Rerandomization: Many partitions to increase success probability

• Query: Check hash tables for collisions
I Compute target’s region for each hash table
I Check corresponding buckets for potential nearest neighbors
I Reduces search space before doing a linear search



O

Hyperplane LSH
[Charikar, STOC’02]



O

Hyperplane LSH
Random point



O

Hyperplane LSH
Opposite point



O

Hyperplane LSH
Two Voronoi cells



O

Hyperplane LSH
Another pair of points



O

Hyperplane LSH
Another hyperplane



O

Hyperplane LSH
Defines partition



O

Hyperplane LSH
Preprocessing



O

Hyperplane LSH
Query



O

Hyperplane LSH
Collisions



O

Hyperplane LSH
Failure



O

Hyperplane LSH
Rerandomization



O

Hyperplane LSH
Collisions



O

Hyperplane LSH
Success



O

Hyperplane LSH
Overview



O

Hyperplane LSH
Overview

• 2 regions induced by each hyperplane
• Simple: one hyperplane corresponds to one inner product
• Fast: k hyperplanes give you 2k regions

For “random” settings, query time O(nρ) with

ρ =
√
2

π ln 2 ·
1
c

(
1 + od ,c(1)

)
.

Efficient but suboptimal as ρ ∝ 1
c2 is achievable



O

Hyperplane LSH
Overview

• 2 regions induced by each hyperplane
• Simple: one hyperplane corresponds to one inner product
• Fast: k hyperplanes give you 2k regions

For “random” settings, query time O(nρ) with

ρ =
√
2

π ln 2 ·
1
c

(
1 + od ,c(1)

)
.

Efficient but suboptimal as ρ ∝ 1
c2 is achievable



O

Hyperplane LSH
Overview

• 2 regions induced by each hyperplane
• Simple: one hyperplane corresponds to one inner product
• Fast: k hyperplanes give you 2k regions

For “random” settings, query time O(nρ) with

ρ =
√
2

π ln 2 ·
1
c

(
1 + od ,c(1)

)
.

Efficient but suboptimal as ρ ∝ 1
c2 is achievable



O

Cross-Polytope LSH
[Terasawa–Tanaka, WADS’07]

[Andoni et al., NIPS’15]



O

Cross-Polytope LSH
Vertices of cross-polytope (simplex)



O

Cross-Polytope LSH
Random rotation



O

Cross-Polytope LSH
Voronoi regions



O

Cross-Polytope LSH
Defines partition



O

Cross-Polytope LSH
Overview



O

Cross-Polytope LSH
Overview

• 2d regions in d dimensions
• Advantage: regions same size and more symmetric

For “random” settings, query time O(nρ) with

ρ = 1
2c2 − 1

(
1 + od(1)

)

Essentially optimal for large c and n = 2o(d) [Dub’10, AR’15]



O

Cross-Polytope LSH
Overview

• 2d regions in d dimensions
• Advantage: regions same size and more symmetric

For “random” settings, query time O(nρ) with

ρ = 1
2c2 − 1

(
1 + od(1)

)
Essentially optimal for large c and n = 2o(d) [Dub’10, AR’15]



O

Spherical/Voronoi LSH
[Andoni et al., SODA’14]

[Andoni–Razenshteyn, STOC’15]



O

Spherical/Voronoi LSH
Random points



O

Spherical/Voronoi LSH
Voronoi cells



O

Spherical/Voronoi LSH
Defines partition



O

Spherical/Voronoi LSH
Overview



O

Spherical/Voronoi LSH
Overview

2O(
√

d) points in d dimensions
• More points improves performance
• More points makes decoding slower

For “random” settings, query time O(nρ) with

ρ = 1
2c2 − 1

(
1 + od(1)

)
.

Essentially optimal for large c and n = 2o(d)



O

Spherical/Voronoi LSH
Overview

2O(
√

d) points in d dimensions
• More points improves performance
• More points makes decoding slower

For “random” settings, query time O(nρ) with

ρ = 1
2c2 − 1

(
1 + od(1)

)
.

Essentially optimal for large c and n = 2o(d)



O

Spherical/Voronoi LSH
Overview

2O(
√

d) points in d dimensions
• More points improves performance
• More points makes decoding slower

For “random” settings, query time O(nρ) with

ρ = 1
2c2 − 1

(
1 + od(1)

)
.

Essentially optimal for large c and n = 2o(d)



O

LSH overview

• Hyperplane LSH: 2 Voronoi cells
I Efficient decoding
I Suboptimal for large d , c

• Cross-Polytope LSH: 2d Voronoi cells
I Reasonably efficient decoding
I Optimal for large c and n = 2o(d)

• Spherical/Voronoi LSH: 2O(
√

d) Voronoi cells
I Slow decoding
I Optimal for large c and n = 2o(d)

1. Can we use even more Voronoi cells?
2. Can decoding be made faster?
3. What about n = 2Ω(d)?



O

LSH overview

• Hyperplane LSH: 2 Voronoi cells
I Efficient decoding
I Suboptimal for large d , c

• Cross-Polytope LSH: 2d Voronoi cells
I Reasonably efficient decoding
I Optimal for large c and n = 2o(d)

• Spherical/Voronoi LSH: 2O(
√

d) Voronoi cells
I Slow decoding
I Optimal for large c and n = 2o(d)

1. Can we use even more Voronoi cells?

2. Can decoding be made faster?
3. What about n = 2Ω(d)?



O

LSH overview

• Hyperplane LSH: 2 Voronoi cells
I Efficient decoding
I Suboptimal for large d , c

• Cross-Polytope LSH: 2d Voronoi cells
I Reasonably efficient decoding
I Optimal for large c and n = 2o(d)

• Spherical/Voronoi LSH: 2O(
√

d) Voronoi cells
I Slow decoding
I Optimal for large c and n = 2o(d)

1. Can we use even more Voronoi cells?
2. Can decoding be made faster?

3. What about n = 2Ω(d)?



O

LSH overview

• Hyperplane LSH: 2 Voronoi cells
I Efficient decoding
I Suboptimal for large d , c

• Cross-Polytope LSH: 2d Voronoi cells
I Reasonably efficient decoding
I Optimal for large c and n = 2o(d)

• Spherical/Voronoi LSH: 2O(
√

d) Voronoi cells
I Slow decoding
I Optimal for large c and n = 2o(d)

1. Can we use even more Voronoi cells?
2. Can decoding be made faster?
3. What about n = 2Ω(d)?



O

Structured filters
Overview



O

Structured filters
Partition dimensions into blocks



O

Structured filters
Random subcodes



O

Structured filters
Construct concatenated code



O

Structured filters
Construct concatenated code



O

Structured filters
Normalize (only for example)



O

Structured filters
Normalize (only for example)



O

Structured filters
Normalize (only for example)



O

Structured filters
Construct Voronoi cells



O

Structured filters
Defines partition



O

Structured filters
...with efficient decoding



O

Structured filters
Techniques

• Idea 1: Increase number of regions to 2Θ(d)

I Number of hash tables increases to 2Θ(d) – ok for n = 2Θ(d)

I Decoding cost potentially too large

• Idea 2: Use structured codes for random regions

I Spherical/Voronoi LSH with dependent random points
I Concatenated code of log d low-dim. spherical codes
I Allows for efficient list-decoding

• Idea 3: Replace partitions with filters

I Relaxation: filters need not partition the space
I Simplified analysis
I Might not be needed to achieve improvement



O

Structured filters
Techniques

• Idea 1: Increase number of regions to 2Θ(d)

I Number of hash tables increases to 2Θ(d) – ok for n = 2Θ(d)

I Decoding cost potentially too large
• Idea 2: Use structured codes for random regions

I Spherical/Voronoi LSH with dependent random points
I Concatenated code of log d low-dim. spherical codes
I Allows for efficient list-decoding

• Idea 3: Replace partitions with filters

I Relaxation: filters need not partition the space
I Simplified analysis
I Might not be needed to achieve improvement



O

Structured filters
Techniques

• Idea 1: Increase number of regions to 2Θ(d)

I Number of hash tables increases to 2Θ(d) – ok for n = 2Θ(d)

I Decoding cost potentially too large
• Idea 2: Use structured codes for random regions

I Spherical/Voronoi LSH with dependent random points
I Concatenated code of log d low-dim. spherical codes
I Allows for efficient list-decoding

• Idea 3: Replace partitions with filters
I Relaxation: filters need not partition the space
I Simplified analysis
I Might not be needed to achieve improvement



O

Structured filters
Results

For random sparse settings (n = 2o(d)), query time O(nρ) with

ρ = 1
2c2 − 1

(
1 + od(1)

)
.

For random dense settings (n = 2κd with small κ), we obtain

ρ = 1− κ
2c2 − 1

(
1 + od ,κ(1)

)
.

For random dense settings (n = 2κd with large κ), we obtain

ρ = −12κ log
(
1− 1

2c2 − 1

) (
1 + od(1)

)
.



O

Structured filters
Results

For random sparse settings (n = 2o(d)), query time O(nρ) with

ρ = 1
2c2 − 1

(
1 + od(1)

)
.

For random dense settings (n = 2κd with small κ), we obtain

ρ = 1− κ
2c2 − 1

(
1 + od ,κ(1)

)
.

For random dense settings (n = 2κd with large κ), we obtain

ρ = −12κ log
(
1− 1

2c2 − 1

) (
1 + od(1)

)
.



O

Structured filters
Results

For random sparse settings (n = 2o(d)), query time O(nρ) with

ρ = 1
2c2 − 1

(
1 + od(1)

)
.

For random dense settings (n = 2κd with small κ), we obtain

ρ = 1− κ
2c2 − 1

(
1 + od ,κ(1)

)
.

For random dense settings (n = 2κd with large κ), we obtain

ρ = −12κ log
(
1− 1

2c2 − 1

) (
1 + od(1)

)
.



Asymmetric nearest neighbors

Previous results: symmetric NNS
• Query time: O(nρ)
• Update time: O(nρ)
• Preprocessing time: O(n1+ρ)
• Space complexity: O(n1+ρ)

Can we get a tradeoff between these costs?



Asymmetric nearest neighbors

Previous results: symmetric NNS
• Query time: O(nρ)
• Update time: O(nρ)
• Preprocessing time: O(n1+ρ)
• Space complexity: O(n1+ρ)

Can we get a tradeoff between these costs?



O

Asymmetric nearest neighbors
Voronoi regions



Asymmetric nearest neighbors
Spherical cap



α

Asymmetric nearest neighbors
Cap height α



α

Asymmetric nearest neighbors
Smaller α =⇒ Larger caps, more work



α

Asymmetric nearest neighbors
Larger α =⇒ Smaller caps, less work



αu αq

Asymmetric nearest neighbors
αq > αu =⇒ Faster queries, slower updates



αq αu

Asymmetric nearest neighbors
αq < αu =⇒ Slower queries, faster updates



αq αu

Asymmetric nearest neighbors
Results

General expressions

Minimize space
(αq/αu = cos θ)

ρq = (2c2 − 1)/c4
ρu = 0

Balance costs
(αq/αu = 1)

ρq = 1/(2c2 − 1)
ρu = 1/(2c2 − 1)

Minimize time
(αq/αu = 1/ cos θ)

ρq = 0
ρu = (2c2 − 1)/(c2 − 1)2

Query time O(nρq), update time O(nρu), preprocessing time O(n1+ρu),
space complexity O(n1+ρu)



αq αu

Asymmetric nearest neighbors
Results

General expressions Small c = 1 + ε

Minimize space
(αq/αu = cos θ)

ρq = (2c2 − 1)/c4
ρu = 0

ρq = 1− 4ε2 + O(ε3)
ρu = 0

Balance costs
(αq/αu = 1)

ρq = 1/(2c2 − 1)
ρu = 1/(2c2 − 1)

ρq = 1− 4ε+ O(ε2)
ρu = 1− 4ε+ O(ε2)

Minimize time
(αq/αu = 1/ cos θ)

ρq = 0
ρu = (2c2 − 1)/(c2 − 1)2

ρq = 0
ρu = 1/(4ε2) + O(1/ε)

Query time O(nρq), update time O(nρu), preprocessing time O(n1+ρu),
space complexity O(n1+ρu)



αq αu

Asymmetric nearest neighbors
Results

General expressions Large c →∞
Minimize space

(αq/αu = cos θ)
ρq = (2c2 − 1)/c4
ρu = 0

ρq = 2/c2 + O(1/c4)
ρu = 0

Balance costs
(αq/αu = 1)

ρq = 1/(2c2 − 1)
ρu = 1/(2c2 − 1)

ρq = 1/(2c2) + O(1/c4)
ρu = 1/(2c2) + O(1/c4)

Minimize time
(αq/αu = 1/ cos θ)

ρq = 0
ρu = (2c2 − 1)/(c2 − 1)2

ρq = 0
ρu = 2/c2 + O(1/c4)

Query time O(nρq), update time O(nρu), preprocessing time O(n1+ρu),
space complexity O(n1+ρu)



αq αu

Asymmetric nearest neighbors
Tradeoffs



Conclusions

Main result: Allow using more regions with list-decodable codes
• For n = 2o(d), non-asymptotic improvement
• For n = 2Θ(d), asymptotic improvement
• Corollary: Lower bounds for n = 2o(d) do not hold for n = 2Θ(d)

• Improved tradeoffs between query and update complexities

Open problems
• Tradeoff for n = 2o(d) optimal?
• Lower bounds for n = 2Θ(d)?
• Apply similar ideas to other norms?
• Practicality?

Questions?



Conclusions

Main result: Allow using more regions with list-decodable codes
• For n = 2o(d), non-asymptotic improvement
• For n = 2Θ(d), asymptotic improvement
• Corollary: Lower bounds for n = 2o(d) do not hold for n = 2Θ(d)

• Improved tradeoffs between query and update complexities
Open problems

• Tradeoff for n = 2o(d) optimal?
• Lower bounds for n = 2Θ(d)?
• Apply similar ideas to other norms?
• Practicality?

Questions?



Conclusions

Main result: Allow using more regions with list-decodable codes
• For n = 2o(d), non-asymptotic improvement
• For n = 2Θ(d), asymptotic improvement
• Corollary: Lower bounds for n = 2o(d) do not hold for n = 2Θ(d)

• Improved tradeoffs between query and update complexities
Open problems

• Tradeoff for n = 2o(d) optimal?
• Lower bounds for n = 2Θ(d)?
• Apply similar ideas to other norms?
• Practicality?

Questions?


	Introduction
	Locality-sensitive hashing
	Hyperplane LSH
	Cross-Polytope LSH
	Spherical/Voronoi LSH

	Structured filters
	Asymmetric nearest neighbors
	Conclusions

