Technische Universiteit
e Eindhoven
University of Technology

New directions in approximate nearest
neighbors for the angular distance

Thijs Laarhoven

mail@thijs.com
http://www.thijs.com/

Proximity Workshop, College Park (MD), USA
(January 13, 2016)

mailto:mail@thijs.com
http://www.thijs.com/

TU/e i)
Nearest neighbor searching

TU/e i :
Nearest neighbor searching

° Data set

TU/e i :
Nearest neighbor searching

. Target

TU/e i :
Nearest neighbor searching

. Nearest neighbor

TU/e

Nearest neighbor searching
Nearest neighbor (¢1-norm)

TU/e

Nearest neighbor searching
Nearest neighbor (angular distance)

TU/e

Nearest neighbor searching
Nearest neighbor (¢2-norm)

TU/e i :
Nearest neighbor searching

) Distance guarantee

TU/e i :
Nearest neighbor searching

° Approximate nearest neighbor
[]
[]
° PR
7
7
4
/ e ~
/ .7
/ /7
1 /
1 /
[J . |
1 |
b O \ \
\ \
\
\
° \ N ~
\ S o=

TU/e i :
Nearest neighbor searching

. Approximation factor ¢ > 1 .

TU
fe Nearest neighbor searching

° Example: Precompute Voronoi cells

TU/e i :
Nearest neighbor searching

Problem setting

e High dimensions d

TU/e i :
Nearest neighbor searching

Problem setting

e High dimensions d
o Large data set of size n = 2(d/legd)
» Smaller n? = Use JLT to reduce d

TU/e . :
Nearest neighbor searching

Problem setting

e High dimensions d
o Large data set of size n = 2(d/legd)

» Smaller n? = Use JLT to reduce d
e Assumption: Data set lies on the sphere

» Angular NNS in R9 equivalent to Eucl. NNS on the sphere
» Reduction from Eucl. NNS in R? to Eucl. NNS on the sphere [AR'15]

TU/e . :
Nearest neighbor searching

Problem setting

e High dimensions d
Large data set of size n = 25(d/logd)

» Smaller n? = Use JLT to reduce d
Assumption: Data set lies on the sphere

» Angular NNS in R9 equivalent to Eucl. NNS on the sphere
» Reduction from Eucl. NNS in R? to Eucl. NNS on the sphere [AR'15]

“Random” case: ¢-r=+/2
» Random unit vectors are usually approximately orthogonal

TU/e . :
Nearest neighbor searching

Problem setting

e High dimensions d
Large data set of size n = 25(d/logd)

» Smaller n? = Use JLT to reduce d
Assumption: Data set lies on the sphere

» Angular NNS in R9 equivalent to Eucl. NNS on the sphere
» Reduction from Eucl. NNS in R? to Eucl. NNS on the sphere [AR'15]

“Random” case: ¢-r=+/2
» Random unit vectors are usually approximately orthogonal

Goal: Query time O(n”) with p < 1

TU/e i :
Nearest neighbor searching

“Random” instances

TU/e i :
Nearest neighbor searching

“Random” instances

TU/e i :
Nearest neighbor searching

“Random” instances

TU/e i :
Nearest neighbor searching

“Random” instances

TU/e i :
Nearest neighbor searching

“Random” instances

TU/e i :
Nearest neighbor searching

“Random” instances

TU/e _ .)
Locality-sensitive hashing

Overview

TU/e _ .)
Locality-sensitive hashing

Overview

e Idea: Use nice partitions of the space

> Nearby vectors are often in the same region
» Distant vectors are unlikely to be in the same region

TU
fe Locality-sensitive hashing

Overview

e Idea: Use nice partitions of the space

> Nearby vectors are often in the same region
» Distant vectors are unlikely to be in the same region

e Precomputation: Store hash tables of vectors per region

» For each region, store contained vectors from data set
» Rerandomization: Many partitions to increase success probability

TU/e _ .)
Locality-sensitive hashing

Overview

e Idea: Use nice partitions of the space

> Nearby vectors are often in the same region
» Distant vectors are unlikely to be in the same region

e Precomputation: Store hash tables of vectors per region

» For each region, store contained vectors from data set

» Rerandomization: Many partitions to increase success probability
e Query: Check hash tables for collisions

» Compute target's region for each hash table

» Check corresponding buckets for potential nearest neighbors

> Reduces search space before doing a linear search

TU/e
Hyperplane LSH

[Charikar, STOC’02]

TU
fe Hyperplane LSH

Random point

TU
fe Hyperplane LSH

Opposite point

TU
fe Hyperplane LSH

Two Voronoi cells

TU
fe Hyperplane LSH

Another pair of points

TU
fe Hyperplane LSH

Another hyperplane

TU
fe Hyperplane LSH

Defines partition

TU
fe Hyperplane LSH

Preprocessing

TU
fe Hyperplane LSH

Query

TU
fe Hyperplane LSH

Collisions

TU/e

Hyperplane LSH

Failure

TU
fe Hyperplane LSH

Rerandomization

TU
fe Hyperplane LSH

Collisions

TU
fe Hyperplane LSH

Success

TU
fe Hyperplane LSH

Overview

TU
fe Hyperplane LSH

Overview

e 2 regions induced by each hyperplane
e Simple: one hyperplane corresponds to one inner product

e Fast: k hyperplanes give you 2 regions

TU
fe Hyperplane LSH

Overview

e 2 regions induced by each hyperplane
e Simple: one hyperplane corresponds to one inner product
e Fast: k hyperplanes give you 2 regions

For “random” settings, query time O(n”) with

o (resetn).

p:

TU
fe Hyperplane LSH

Overview

e 2 regions induced by each hyperplane
e Simple: one hyperplane corresponds to one inner product
e Fast: k hyperplanes give you 2 regions

For “random” settings, query time O(n”) with

o (resetn).

p:

Efficient but suboptimal as p % is achievable

TU/e
Cross-Polytope LSH
[Terasawa—Tanaka, WADS’07]
[Andoni et al., NIPS’15]

TU/e
Cross-Polytope LSH

Vertices of cross-polytope (simplex)

TU/e
Cross-Polytope LSH

Random rotation

TU/e

Cross-Polytope/ LSH

Voronoi regio

TU/e

Cross-Polytope/ LSH

Defines partitigh

TU
fe Cross-Polytope LSH

Overview

TU/e
Cross-Polytope LSH

Overview

e 2d regions in d dimensions

e Advantage: regions same size and more symmetric
For “random” settings, query time O(n”) with

1
C2c2-1

p (1 + Od(l))

TU/e
Cross-Polytope LSH

Overview

e 2d regions in d dimensions

e Advantage: regions same size and more symmetric
For “random” settings, query time O(n”) with

1
C2c2-1

p (1+ 0u(1))

Essentially optimal for large ¢ and n = 2°(9) [Dub’10, AR'15]

TU/e

Spherical /Voronoi LSH

[Andoni et al., SODA’14]
[Andoni—-Razenshteyn, STOC'15]

TU/e

Spherical /Voronoi LSH

Random points

TU/e

Spherigal /Voronoi LSH

TU/e

Spherigal /Voronoi LSH

TU/e

Spherical /Voronoi LSH

Overview

TU
fe Spherical /Voronoi LSH

Overview

20(Vd) points in d dimensions
e More points improves performance

e More points makes decoding slower

TU
fe Spherical /Voronoi LSH

Overview

20(Vd) points in d dimensions
e More points improves performance
e More points makes decoding slower

For “random” settings, query time O(n”) with

1

P=s52"1 (1 + Od(l)).

TU
fe Spherical /Voronoi LSH

Overview

20(Vd) points in d dimensions
e More points improves performance
e More points makes decoding slower

For “random” settings, query time O(n”) with

1

P=s52"1 (1 + Od(l)).

Essentially optimal for large ¢ and n = 2°()

TU
/e LSH overview

e Hyperplane LSH: 2 Voronoi cells
» Efficient decoding
» Suboptimal for large d, ¢
e Cross-Polytope LSH: 2d Voronoi cells
» Reasonably efficient decoding
» Optimal for large ¢ and n = 2°(9)
e Spherical /Voronoi LSH: 20(Vd) \/oronoi cells

» Slow decoding
» Optimal for large ¢ and n = 2°(¢)

TU
/e LSH overview

e Hyperplane LSH: 2 Voronoi cells

» Efficient decoding
» Suboptimal for large d, ¢

e Cross-Polytope LSH: 2d Voronoi cells

» Reasonably efficient decoding
» Optimal for large ¢ and n = 2°(9)

e Spherical /Voronoi LSH: 20(V4) Voronoi cells

» Slow decoding
» Optimal for large ¢ and n = 2°(¢)

1. Can we use even more Voronoi cells?

TU
/e LSH overview

e Hyperplane LSH: 2 Voronoi cells
» Efficient decoding
» Suboptimal for large d, ¢
e Cross-Polytope LSH: 2d Voronoi cells
» Reasonably efficient decoding
» Optimal for large ¢ and n = 2°(9)
e Spherical /Voronoi LSH: 20(Vd) \/oronoi cells

» Slow decoding
» Optimal for large ¢ and n = 2°(¢)

1. Can we use even more Voronoi cells?
2. Can decoding be made faster?

TU/e

N

LSH overview

e Hyperplane LSH: 2 Voronoi cells
» Efficient decoding
» Suboptimal for large d, ¢
e Cross-Polytope LSH: 2d Voronoi cells
» Reasonably efficient decoding
» Optimal for large ¢ and n = 2°(9)
e Spherical /Voronoi LSH: 20(Vd) \/oronoi cells

» Slow decoding
» Optimal for large ¢ and n = 2°(¢)

. Can we use even more Voronoi cells?
. Can decoding be made faster?
. What about n = 22(9)?

TU
/e Structured filters

Overview

TU
/e Structured filters

Partition dimensions into blocks

TU
/e Structured filters

Randomfubcodes

—©
@

Structurged filters
Construct cong¢atenated code

TU/e

Structured filters

TU/e

Construct cong¢atenated code

Structurgd filters
Normalize (only for example)

TU/e

Structurgd filters
Normalize (only for example)

TU/e

TU
/e Structured filters

Normalize (only for example)

Stxuctured fi

Cofstruct Voronof cells

TU/e

Stxuctured fi

efines partitign

TU
/e Structured filters

...with effici¢nt de¢oding

TU
/e Structured filters

Techniques

e Idea 1: Increase number of regions to 29(<)

» Number of hash tables increases to 29(9) — ok for n = 2°(¢)
» Decoding cost potentially too large

TU
/e Structured filters

Techniques

e Idea 1: Increase number of regions to 29(<)

» Number of hash tables increases to 29(9) — ok for n = 2°(¢)
» Decoding cost potentially too large
o |dea 2: Use structured codes for random regions
» Spherical /Voronoi LSH with dependent random points
» Concatenated code of log d low-dim. spherical codes
> Allows for efficient list-decoding

TU
/e Structured filters

Techniques

e Idea 1: Increase number of regions to 29(<)

» Number of hash tables increases to 2°(9) — ok for n = 20(d)
» Decoding cost potentially too large
o |dea 2: Use structured codes for random regions
» Spherical /Voronoi LSH with dependent random points
» Concatenated code of log d low-dim. spherical codes
> Allows for efficient list-decoding
e |Idea 3: Replace partitions with filters
> Relaxation: filters need not partition the space
» Simplified analysis
» Might not be needed to achieve improvement

TU
/e Structured filters

Results

For random sparse settings (n = 2°(9)), query time O(n?) with

1

P=ha 1

(1 + od(l)).

TU
/e Structured filters

Results

For random sparse settings (n = 2°(9)), query time O(n?) with

1

P=ha 1

(1 + od(l)).

For random dense settings (n = 2°9 with small), we obtain

1

p= 2vc2_%1 (1 + Od,n(l))-

TU
/e Structured filters

Results
For random sparse settings (n = 2°(9)), query time O(n?) with

s (1+0u(1)).

For random dense settings (n = 2°9 with small), we obtain

p:

1

p= 2vc2_%1 (1 + Od,n(1)>-

For random dense settings (n = 279 with large x), we obtain

p= ;—: log <1 — 2c21— 1) (1 + od(l)).

TU/e
/ Asymmetric nearest neighbors

Previous results: symmetric NNS
e Query time: O(n”)
¢ Update time: O(n”)
o Preprocessing time: O(n'*r)

e Space complexity: O(n'*?)

TU/e . i
Asymmetric nearest neighbors

Previous results: symmetric NNS
e Query time: O(n”)
¢ Update time: O(n”)
o Preprocessing time: O(n'*r)
e Space complexity: O(n'*?)

Can we get a tradeoff between these costs?

TU/e _ _
Asymmetric nearest neighbors

Voronoi regions

TU/e . i
Asymmetric nearest neighbors

Spherical cap

TU/e . i
Asymmetric nearest neighbors

Cap height «

TU/e

Asymmetric nearest neighbors

Smaller « = Larger caps, moye work

TU/e . i
Asymmetric nearest neighbors

Larger « = Smaller caps, less work

TU/e

TU/e

TU/e _ _
Asymmetric nearest neighbors

Results

General expressions

Minimize space pq = (2c2 —1)/c*
(aq/y =cosB) = p, =0

Balance costs pq=1/(2c2 - 1)
(aq/an =1) pu=1/(2¢2 =1)
Minimize time pq =0

(q/an =1/ cos8) p, = (2c2 —1)/(c? — 1)?

Query time O(n”), update time O(n”), preprocessing time O(n**?4),
space complexity O(nl*74)

TU/e

Asymmetric nearest neighbors

Results

General expressions

Smallc=1+¢

Minimize space
(g /0y = cos b))

Balance costs
(aq/an =1)

Minimize time

pq = (2¢> ~1)/c*
Pu = 0

po=1/(2¢2 - 1)
pu=1/(2¢2 51)

pq=0

pq =1 —4e%+ 0(£3)
pu=0

pq =1— 4+ O(c?)
pu=1—4de+ O(?)

pq =0

(aq/ay = 1/ cos) py = (2¢ —1)/(c? —1)? py =1/(4c?) + O(1/e)

Query time O(n%), update time O(n”), preprocessing time O(n'*#u),
space complexity O(nl*74)

TU/e

Asymmetric nearest neighbors

Results

General expressions

Large ¢ —

Minimize space pq = (2c2 —1)/c*
(aq/y =cosB) = p, =0

Balance costs pq=1/(2c2 - 1)
(aq/an =1) pu=1/(2¢2 = 1)
Minimize time pq =0

pq = 2/c®+ 0(1/c*)
pu=0

pa = 1/(2¢?) + O(1/c%)
pu=1/(2¢?) + O(1/c%)

pq =0

(q/an =1/ cos8) py = (2¢ —1)/(c® — 1)? p, =2/ + O(1/c*)

Query time O(n%), update time O(n”), preprocessing time O(n'*#u),

space complexity O(nl*74)

Asymmetric nearest neighbors
Tradeoffs

— Query exponent pq

0.8 1.2
— Update exponent p,

TU
/e Conclusions

Main result: Allow using more regions with list-decodable codes
e For n=20(d), non-asymptotic improvement
e For n = 2°9(9) asymptotic improvement
e Corollary: Lower bounds for n = 2°(¢) do not hold for n = 2°(d)

e Improved tradeoffs between query and update complexities

TU/e

Conclusions

Main result: Allow using more regions with list-decodable codes

e For n=20(d), non-asymptotic improvement

e For n = 2°9(9) asymptotic improvement

e Corollary: Lower bounds for n = 2°(9) do not hold for n = 2°(d)

e Improved tradeoffs between query and update complexities
Open problems

o Tradeoff for n = 2°(9) optimal?

o Lower bounds for n = 2°(d)?

e Apply similar ideas to other norms?

e Practicality?

TU/e

Conclusions

Main result: Allow using more regions with list-decodable codes

e For n=20(d), non-asymptotic improvement

e For n = 2°9(9) asymptotic improvement

e Corollary: Lower bounds for n = 2°(9) do not hold for n = 2°(d)

e Improved tradeoffs between query and update complexities
Open problems

o Tradeoff for n = 2°(9) optimal?

o Lower bounds for n = 2°(d)?

e Apply similar ideas to other norms?

e Practicality?

Questions?

	Introduction
	Locality-sensitive hashing
	Hyperplane LSH
	Cross-Polytope LSH
	Spherical/Voronoi LSH

	Structured filters
	Asymmetric nearest neighbors
	Conclusions

