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° Approximate nearest neighbor
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. Approximation factor ¢ > 1 .
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° Example: Precompute Voronoi cells
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Problem setting

e High dimensions d
Large data set of size n = 25(d/logd)

» Smaller n? = Use JLT to reduce d
Assumption: Data set lies on the sphere

» Angular NNS in R9 equivalent to Eucl. NNS on the sphere
» Reduction from Eucl. NNS in R? to Eucl. NNS on the sphere [AR'15]

“Random” case: ¢-r=+/2
» Random unit vectors are usually approximately orthogonal

Goal: Query time O(n”) with p < 1
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Locality-sensitive hashing

Overview

e Idea: Use nice partitions of the space

> Nearby vectors are often in the same region
» Distant vectors are unlikely to be in the same region

e Precomputation: Store hash tables of vectors per region

» For each region, store contained vectors from data set

» Rerandomization: Many partitions to increase success probability
e Query: Check hash tables for collisions

» Compute target's region for each hash table

» Check corresponding buckets for potential nearest neighbors

> Reduces search space before doing a linear search
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[Charikar, STOC’02]
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Two Voronoi cells
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Defines partition
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Preprocessing
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Rerandomization
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Overview

e 2 regions induced by each hyperplane
e Simple: one hyperplane corresponds to one inner product
e Fast: k hyperplanes give you 2 regions

For “random” settings, query time O(n”) with

o (resetn).

p:

Efficient but suboptimal as p % is achievable
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[Terasawa—Tanaka, WADS’07]
[Andoni et al., NIPS’15]
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Vertices of cross-polytope (simplex)
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Random rotation
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Overview

e 2d regions in d dimensions

e Advantage: regions same size and more symmetric
For “random” settings, query time O(n”) with

1
C2c2-1

p (1+ 0u(1))

Essentially optimal for large ¢ and n = 2°(9) [Dub’10, AR'15]
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[Andoni et al., SODA’14]
[Andoni—-Razenshteyn, STOC'15]
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Random points
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For “random” settings, query time O(n”) with
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» Reasonably efficient decoding
» Optimal for large ¢ and n = 2°(9)
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1. Can we use even more Voronoi cells?
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LSH overview

e Hyperplane LSH: 2 Voronoi cells
» Efficient decoding
» Suboptimal for large d, ¢
e Cross-Polytope LSH: 2d Voronoi cells
» Reasonably efficient decoding
» Optimal for large ¢ and n = 2°(9)
e Spherical /Voronoi LSH: 20(Vd) \/oronoi cells

» Slow decoding
» Optimal for large ¢ and n = 2°(¢)

. Can we use even more Voronoi cells?
. Can decoding be made faster?
. What about n = 22(9)?
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Partition dimensions into blocks
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Stxuctured fi

Cofstruct Voronof cells
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...with effici¢nt de¢oding
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Techniques

e Idea 1: Increase number of regions to 29(<)

» Number of hash tables increases to 2°(9) — ok for n = 20(d)
» Decoding cost potentially too large
o |dea 2: Use structured codes for random regions
» Spherical /Voronoi LSH with dependent random points
» Concatenated code of log d low-dim. spherical codes
> Allows for efficient list-decoding
e |Idea 3: Replace partitions with filters
> Relaxation: filters need not partition the space
» Simplified analysis
» Might not be needed to achieve improvement
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Results
For random sparse settings (n = 2°(9)), query time O(n?) with

s (1+0u(1)).

For random dense settings (n = 2°9 with small ), we obtain

p:

1

p= 2vc2_%1 (1 + Od,n(1)>-

For random dense settings (n = 279 with large x), we obtain

p= ;—: log <1 — 2c21— 1) (1 + od(l)).
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Previous results: symmetric NNS
e Query time: O(n”)
¢ Update time: O(n”)
o Preprocessing time: O(n'*r)
e Space complexity: O(n'*?)

Can we get a tradeoff between these costs?
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Voronoi regions
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Larger « = Smaller caps, less work
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Results

General expressions

Minimize space pq = (2c2 —1)/c*
(aq/y =cosB) = p, =0

Balance costs pq=1/(2c2 - 1)
(aq/an =1) pu=1/(2¢2 =1)
Minimize time pq =0

(q/an =1/ cos8) p, = (2c2 —1)/(c? — 1)?

Query time O(n”), update time O(n”), preprocessing time O(n**?4),
space complexity O(nl*74)
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Results

General expressions

Smallc=1+¢

Minimize space
(g /0y = cos b))

Balance costs
(aq/an =1)

Minimize time

pq = (2¢> ~1)/c*
Pu = 0

po=1/(2¢2 - 1)
pu=1/(2¢2 51)

pq=0

pq =1 —4e%+ 0(£3)
pu=0

pq =1— 4+ O(c?)
pu=1—4de+ O(?)

pq =0

(aq/ay = 1/ cos) py = (2¢ —1)/(c? —1)? py =1/(4c?) + O(1/e)

Query time O(n%), update time O(n”), preprocessing time O(n'*#u),
space complexity O(nl*74)
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Results

General expressions

Large ¢ —

Minimize space pq = (2c2 —1)/c*
(aq/y =cosB) = p, =0

Balance costs pq=1/(2c2 - 1)
(aq/an =1) pu=1/(2¢2 = 1)
Minimize time pq =0

pq = 2/c®+ 0(1/c*)
pu=0

pa = 1/(2¢?) + O(1/c%)
pu=1/(2¢?) + O(1/c%)

pq =0

(q/an =1/ cos8) py = (2¢ —1)/(c® — 1)? p, =2/ + O(1/c*)

Query time O(n%), update time O(n”), preprocessing time O(n'*#u),

space complexity O(nl*74)



Asymmetric nearest neighbors
Tradeoffs

— Query exponent pq

0.8 1.2
— Update exponent p,
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Conclusions

Main result: Allow using more regions with list-decodable codes

e For n=20(d), non-asymptotic improvement

e For n = 2°9(9) asymptotic improvement

e Corollary: Lower bounds for n = 2°(9) do not hold for n = 2°(d)

e Improved tradeoffs between query and update complexities
Open problems

o Tradeoff for n = 2°(9) optimal?

o Lower bounds for n = 2°(d)?

e Apply similar ideas to other norms?

e Practicality?

Questions?
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