

New directions in approximate nearest neighbors for the angular distance

Thijs Laarhoven

mail@thijs.com
http://www.thijs.com/

Proximity Workshop, College Park (MD), USA (January 13, 2016)

Nearest neighbor searching

Nearest neighbor searching

Data set

Nearest neighbor searching

Target

Nearest neighbor searching

Nearest neighbor

Nearest neighbor searching

Nearest neighbor (ℓ_1 -norm)

Nearest neighbor searching

Nearest neighbor (angular distance)

Nearest neighbor searching

Nearest neighbor (ℓ_2 -norm)

Distance guarantee

Approximate nearest neighbor

Approximation factor c>1

Nearest neighbor searching

Example: Precompute Voronoi cells

Nearest neighbor searching

Problem setting

• High dimensions d

Nearest neighbor searching

- High dimensions d
- Large data set of size $n = 2^{\Omega(d/\log d)}$
 - ▶ Smaller n? \Longrightarrow Use JLT to reduce d

Nearest neighbor searching

- High dimensions d
- Large data set of size $n = 2^{\Omega(d/\log d)}$
 - ▶ Smaller n? \Longrightarrow Use JLT to reduce d
- · Assumption: Data set lies on the sphere
 - ightharpoonup Angular NNS in \mathbb{R}^d equivalent to Eucl. NNS on the sphere
 - \triangleright Reduction from Eucl. NNS in \mathbb{R}^d to Eucl. NNS on the sphere [AR'15]

Nearest neighbor searching

- High dimensions d
- Large data set of size $n = 2^{\Omega(d/\log d)}$
 - ▶ Smaller n? \Longrightarrow Use JLT to reduce d
- · Assumption: Data set lies on the sphere
 - ightharpoonup Angular NNS in \mathbb{R}^d equivalent to Eucl. NNS on the sphere
 - ightharpoonup Reduction from Eucl. NNS in \mathbb{R}^d to Eucl. NNS on the sphere [AR'15]
- "Random" case: $c \cdot r = \sqrt{2}$
 - Random unit vectors are usually approximately orthogonal

- High dimensions d
- Large data set of size $n = 2^{\Omega(d/\log d)}$
 - ▶ Smaller n? \Longrightarrow Use JLT to reduce d
- · Assumption: Data set lies on the sphere
 - ightharpoonup Angular NNS in \mathbb{R}^d equivalent to Eucl. NNS on the sphere
 - ightharpoonup Reduction from Eucl. NNS in \mathbb{R}^d to Eucl. NNS on the sphere [AR'15]
- "Random" case: $c \cdot r = \sqrt{2}$
 - Random unit vectors are usually approximately orthogonal
- Goal: Query time $O(n^{\rho})$ with $\rho < 1$

Nearest neighbor searching

Nearest neighbor searching

Nearest neighbor searching

Nearest neighbor searching

Nearest neighbor searching

Nearest neighbor searching

Locality-sensitive hashing

Locality-sensitive hashing

- Idea: Use nice partitions of the space
 - ▶ Nearby vectors are often in the same region
 - Distant vectors are unlikely to be in the same region

Locality-sensitive hashing

- Idea: Use nice partitions of the space
 - Nearby vectors are often in the same region
- Distant vectors are unlikely to be in the same region
- Precomputation: Store hash tables of vectors per region
 - ▶ For each region, store contained vectors from data set
 - Rerandomization: Many partitions to increase success probability

Locality-sensitive hashing

- Idea: Use nice partitions of the space
 - Nearby vectors are often in the same region
 - Distant vectors are unlikely to be in the same region
- Precomputation: Store hash tables of vectors per region
 - ▶ For each region, store contained vectors from data set
 - Rerandomization: Many partitions to increase success probability
- Query: Check hash tables for collisions
 - Compute target's region for each hash table
 - Check corresponding buckets for potential nearest neighbors
 - ▶ Reduces search space before doing a linear search

Hyperplane LSH

[Charikar, STOC'02]

Hyperplane LSH

Random point

Hyperplane LSH

Opposite point

TU/e **Hyperplane LSH** Two Voronoi cells

Hyperplane LSH

Another pair of points

TU/e **Hyperplane LSH** Overview

Hyperplane LSH

Overview

- 2 regions induced by each hyperplane
- Simple: one hyperplane corresponds to one inner product
- Fast: k hyperplanes give you 2^k regions

Hyperplane LSH

Overview

- 2 regions induced by each hyperplane
- Simple: one hyperplane corresponds to one inner product
- Fast: k hyperplanes give you 2^k regions

For "random" settings, query time $O(n^{\rho})$ with

$$\rho = \frac{\sqrt{2}}{\pi \ln 2} \cdot \frac{1}{c} \left(1 + o_{d,c}(1) \right).$$

Hyperplane LSH

Overview

- 2 regions induced by each hyperplane
- Simple: one hyperplane corresponds to one inner product
- Fast: k hyperplanes give you 2^k regions

For "random" settings, query time $O(n^{\rho})$ with

$$\rho = \frac{\sqrt{2}}{\pi \ln 2} \cdot \frac{1}{c} \left(1 + o_{d,c}(1) \right).$$

Efficient but suboptimal as $ho \propto \frac{1}{c^2}$ is achievable

Cross-Polytope LSH

[Terasawa-Tanaka, WADS'07] [Andoni et al., NIPS'15]

Cross-Polytope LSH

Vertices of cross-polytope (simplex)

Cross-Polytope LSH

Random rotation

Cross-Polytope LSH

- 2*d* regions in *d* dimensions
- Advantage: regions same size and more symmetric

For "random" settings, query time $O(n^{\rho})$ with

$$\rho = \frac{1}{2c^2 - 1} \left(1 + o_d(1) \right)$$

Cross-Polytope LSH

- 2d regions in d dimensions
- Advantage: regions same size and more symmetric

For "random" settings, query time $O(n^{\rho})$ with

$$\rho = \frac{1}{2c^2 - 1} \left(1 + o_d(1) \right)$$

Essentially optimal for large c and $n = 2^{o(d)}$ [Dub'10, AR'15]

Spherical/Voronoi LSH

[Andoni et al., SODA'14] [Andoni-Razenshteyn, STOC'15]

Spherical/Voronoi LSH

Random points

Spherical/Voronoi LSH

Overview

$2^{O(\sqrt{d})}$ points in d dimensions

- More points improves performance
- More points makes decoding slower

Spherical/Voronoi LSH

Overview

$2^{O(\sqrt{d})}$ points in d dimensions

- More points improves performance
- More points makes decoding slower

For "random" settings, query time $O(n^{\rho})$ with

$$\rho = \frac{1}{2c^2 - 1} \left(1 + o_d(1) \right).$$

Spherical/Voronoi LSH

Overview

$2^{O(\sqrt{d})}$ points in d dimensions

- More points improves performance
- More points makes decoding slower

For "random" settings, query time $O(n^{\rho})$ with

$$\rho = \frac{1}{2c^2 - 1} \Big(1 + o_d(1) \Big).$$

Essentially optimal for large c and $n = 2^{o(d)}$

- Hyperplane LSH: 2 Voronoi cells
 - Efficient decoding
 - ightharpoonup Suboptimal for large d, c
- Cross-Polytope LSH: 2d Voronoi cells
 - Reasonably efficient decoding
 - ▶ Optimal for large c and $n = 2^{o(d)}$
- Spherical/Voronoi LSH: $2^{O(\sqrt{d})}$ Voronoi cells
 - Slow decoding
 - ▶ Optimal for large c and $n = 2^{o(d)}$

- Hyperplane LSH: 2 Voronoi cells
 - Efficient decoding
 - ► Suboptimal for large *d*, *c*
- Cross-Polytope LSH: 2d Voronoi cells
 - ► Reasonably efficient decoding
 - ▶ Optimal for large c and $n = 2^{o(d)}$
- Spherical/Voronoi LSH: $2^{O(\sqrt{d})}$ Voronoi cells
 - Slow decoding
 - ▶ Optimal for large c and $n = 2^{o(d)}$
- 1. Can we use even more Voronoi cells?

- Hyperplane LSH: 2 Voronoi cells
 - Efficient decoding
 - ightharpoonup Suboptimal for large d, c
- Cross-Polytope LSH: 2d Voronoi cells
 - Reasonably efficient decoding
 - Optimal for large c and $n = 2^{o(d)}$
- Spherical/Voronoi LSH: $2^{O(\sqrt{d})}$ Voronoi cells
 - Slow decoding
 - Optimal for large c and $n = 2^{o(d)}$
- 1. Can we use even more Voronoi cells?
- 2. Can decoding be made faster?

- Hyperplane LSH: 2 Voronoi cells
 - Efficient decoding
 - \triangleright Suboptimal for large d, c
- Cross-Polytope LSH: 2d Voronoi cells
 - Reasonably efficient decoding
 - Optimal for large c and $n = 2^{o(d)}$
- Spherical/Voronoi LSH: $2^{O(\sqrt{d})}$ Voronoi cells
 - Slow decoding
 - ▶ Optimal for large c and $n = 2^{o(d)}$
- 1. Can we use even more Voronoi cells?
- 2. Can decoding be made faster?
- 3. What about $n = 2^{\Omega(d)}$?

Structured filters

Overview

TU/e **Structured filters** Partition dimensions into blocks

TU/e **Structured filters** Construct concatenated code

Structured filters

Construct concatenated code

Structured filters

Normalize (only for example)

Structured filters

Normalize (only for example)

Structured filters

Normalize (only for example)

Structured filters

Techniques

- Idea 1: Increase number of regions to $2^{\Theta(d)}$
 - ▶ Number of hash tables increases to $2^{\Theta(d)}$ ok for $n = 2^{\Theta(d)}$
 - Decoding cost potentially too large

Structured filters

Techniques

- Idea 1: Increase number of regions to $2^{\Theta(d)}$
 - Number of hash tables increases to $2^{\Theta(d)}$ ok for $n = 2^{\Theta(d)}$
 - Decoding cost potentially too large
- Idea 2: Use structured codes for random regions
 - ► Spherical/Voronoi LSH with dependent random points
 - Concatenated code of log d low-dim. spherical codes
 - Allows for efficient list-decoding

Structured filters

Techniques

- Idea 1: Increase number of regions to $2^{\Theta(d)}$
 - Number of hash tables increases to $2^{\Theta(d)}$ ok for $n = 2^{\Theta(d)}$
 - Decoding cost potentially too large
- Idea 2: Use structured codes for random regions
 - Spherical/Voronoi LSH with dependent random points
 - Concatenated code of log d low-dim. spherical codes
 - Allows for efficient list-decoding
- Idea 3: Replace partitions with filters
 - Relaxation: filters need not partition the space
 - Simplified analysis
 - Might not be needed to achieve improvement

Structured filters

Results

For random sparse settings $(n = 2^{o(d)})$, query time $O(n^{\rho})$ with

-or random sparse settings
$$(n=2^{o(d)})$$
, query time $O(n^{
ho})$ wit $ho=rac{1}{2c^2-1}\left(1+o_d(1)
ight).$

Structured filters

Results

For random sparse settings $(n = 2^{o(d)})$, query time $O(n^{\rho})$ with

$$ho = rac{1}{2c^2 - 1} \left(1 + o_d(1)
ight).$$

For random dense settings ($n = 2^{\kappa d}$ with small κ), we obtain

$$\rho = \frac{1-\kappa}{2c^2-1} \left(1+o_{d,\kappa}(1)\right).$$

Structured filters

Results

For random sparse settings $(n = 2^{o(d)})$, query time $O(n^{\rho})$ with

$$\rho = \frac{1}{2c^2 - 1} \left(1 + o_d(1) \right).$$

For random dense settings ($n=2^{\kappa d}$ with small κ), we obtain

$$\rho = \frac{1 - \kappa}{2c^2 - 1} \left(1 + o_{d,\kappa}(1) \right).$$

For random dense settings ($n=2^{\kappa d}$ with large κ), we obtain

$$\rho = \frac{-1}{2\kappa} \log \left(1 - \frac{1}{2c^2 - 1} \right) \left(1 + o_d(1) \right).$$

Asymmetric nearest neighbors

Previous results: symmetric NNS

- Query time: $O(n^{\rho})$
- Update time: $O(n^{\rho})$
- Preprocessing time: $O(n^{1+\rho})$
- Space complexity: $O(n^{1+\rho})$

Asymmetric nearest neighbors

Previous results: symmetric NNS

- Query time: $O(n^{\rho})$
- Update time: $O(n^{\rho})$
- Preprocessing time: $O(n^{1+\rho})$
- Space complexity: $O(n^{1+\rho})$

Can we get a tradeoff between these costs?

Asymmetric nearest neighbors Cap height α

Asymmetric nearest neighbors

Smaller $\alpha \implies$ Larger caps, more work

Asymmetric nearest neighbors

Larger $\alpha \implies$ Smaller caps, less work

Asymmetric nearest neighbors

Asymmetric nearest neighbors

Asymmetric nearest neighbors Results

General expressions $ho_{ m q} = (2{ m c}^2 - 1)/{ m c}^4$ Minimize space $(\alpha_{\rm q}/\alpha_{\rm u}=\cos\theta)$ $ho_{ m q}=\mathbf{1}/(\mathbf{2c^2-1})\chi_q$ Balance costs $\rho_{\rm u} = 1/(2c^2 - 1)$ $(\alpha_{\rm o}/\alpha_{\rm u}=1)$ Minimize time $ho_{ m q}={f 0}$ $(\alpha_{\rm q}/\alpha_{\rm u} = 1/\cos\theta) \rho_{\rm u} = (2c^2 - 1)/(c^2 - 1)^2$

Query time $O(n^{\rho_{\rm q}})$, update time $O(n^{\rho_{\rm u}})$, preprocessing time $O(n^{1+\rho_{\rm u}})$, space complexity $O(n^{1+\rho_{\rm u}})$

Asymmetric nearest neighbors Results

	/		
	General expressions	Small $c = 1 + \varepsilon$	
Minimize space	$ ho_{ m q}=(2{ m c}^2-1)/{ m c}^4$	$ \rho_{\rm q} = 1 - 4\varepsilon^2 + O(\varepsilon^3) \rho_{\rm u} = 0 $	
$(lpha_{ m q}/lpha_{ m u}=\cos heta)$	$ ho_{ m u}={f 0}$	$ ho_{ m u}=0$	
	1 //2 2 1)	1 1 2 2 2	
Balance costs	$ ho_{ m q}=1/(\mathbf{2c^2-1})$	$\rho_{\rm q} = 1 - 4\varepsilon + O(\varepsilon^2)$	
$(lpha_{ m q}/lpha_{ m u}=1)$	$ ho_{\mathrm{u}}=1/(\mathbf{2c^2-1})$	$ ho_{ m q} = 1 - 4arepsilon + O(arepsilon^2) \ ho_{ m u} = 1 - 4arepsilon + O(arepsilon^2)$	
\	\ \	1	
Minimize time	$ ho_{ m q}={f 0}$	$ ho_{ m q} = 0$	
$(\alpha_{\rm q}/\alpha_{\rm u} = 1/\cos\theta) \ \rho_{\rm u} = (2{\bf c}^2 - 1)/({\bf c}^2 - 1)^2 \ \rho_{\rm u} = 1/(4\varepsilon^2) + O(1/\varepsilon)$			
Query time $O(n^{\rho_q})$ undate time $O(n^{\rho_u})$ preprocessing time $O(n^{1+\rho_u})$			

Query time $O(n^{\rho_{\rm q}})$, update time $O(n^{\rho_{\rm u}})$, preprocessing time $O(n^{1+\rho_{\rm u}})$, space complexity $O(n^{1+\rho_{\rm u}})$

Asymmetric nearest neighbors Results

	General expressions	Large $c \to \infty$
Minimize space	$ ho_{ m q} = (2{ m c}^2 - 1)/{ m c}^4$	$ ho_{\rm q} = 2/c^2 + O(1/c^4)$ $ ho_{\rm u} = 0$
$(\alpha_{ m q}/\alpha_{ m u}=\cos heta)$	$ angle ho_{ m u} = {f 0}$	$ ho_{ m u}=0$
Balance costs $(lpha_{ m q}/lpha_{ m u}=1)$	$ ho_{ m q} = 1/(2{ m c}^2-1) \ ho_{ m u} = 1/(2{ m c}^2-1)$	$ ho_{ m q} = 1/(2c^2) + O(1/c^4)$ $ ho_{ m u} = 1/(2c^2) + O(1/c^4)$
Minimize time	$ackslash ho_{ m q} = {f 0}$	$ ho_{ m q} eq 0$
$(\alpha_{ m q}/\alpha_{ m u}=1/\cos a$	$ ho_{ m u} = (2{ m c}^2-1)/({ m c}^2-1)^2$	$\rho_{\rm u} = 2/c^2 + O(1/c^4)$
Query time $O(n^{\rho_{\rm q}})$, update time $O(n^{\rho_{\rm u}})$, preprocessing time $O(n^{1+\rho_{\rm u}})$,		

Query time $O(n^{\rho_{\rm q}})$, update time $O(n^{\rho_{\rm u}})$, preprocessing time $O(n^{1+\rho_{\rm u}})$, space complexity $O(n^{1+\rho_{\rm u}})$

Asymmetric nearest neighbors

Tradeoffs

Conclusions

Main result: Allow using more regions with list-decodable codes

- For $n = 2^{o(d)}$, non-asymptotic improvement
- For $n = 2^{\Theta(d)}$, asymptotic improvement
- Corollary: Lower bounds for $n = 2^{o(d)}$ do not hold for $n = 2^{\Theta(d)}$
- Improved tradeoffs between query and update complexities

Conclusions

Main result: Allow using more regions with list-decodable codes

- For $n = 2^{o(d)}$, non-asymptotic improvement
- For $n = 2^{\Theta(d)}$, asymptotic improvement
- Corollary: Lower bounds for $n = 2^{o(d)}$ do not hold for $n = 2^{\Theta(d)}$
- Improved tradeoffs between query and update complexities

Open problems

- Tradeoff for $n = 2^{o(d)}$ optimal?
- Lower bounds for $n = 2^{\Theta(d)}$?
- Apply similar ideas to other norms?
- Practicality?

Conclusions

Main result: Allow using more regions with list-decodable codes

- For $n = 2^{o(d)}$, non-asymptotic improvement
- For $n = 2^{\Theta(d)}$, asymptotic improvement
- Corollary: Lower bounds for $n = 2^{o(d)}$ do not hold for $n = 2^{\Theta(d)}$
- Improved tradeoffs between query and update complexities

Open problems

- Tradeoff for $n = 2^{o(d)}$ optimal?
- Lower bounds for $n = 2^{\Theta(d)}$?
- Apply similar ideas to other norms?
- Practicality?

Questions?